Some Developments in the Tagged Signal Model

Xiaojun Liu
With J. Adam Cataldo, Edward A. Lee, Eleftherios D. Matsikoudis, and Haiyang Zheng

6th Biennial Ptolemy Miniconference

Berkeley, CA
May 12, 2005

The Tagged Signal Model

- A set of tags T, e.g. $T=[0, \infty)$
- A set of values V, e.g. $V=\mathbf{N}$
- An event e is a pair of a tag and a value:

$$
e=(t, v)
$$

- A signal s is a set of events, e.g.

$$
\text { clock }_{1}=\{(0.0,1),(1.0,1),(2.0,1), \ldots\}
$$

- A process P is a relation on signals

Signals and Processes

	Signals	Processes
Physics	Velocities, Accelerations, and Forces	Newton's Laws
Electrical Engineering	Voltages and Currents	Resistors and Capacitors, Kirchhoff's Laws
Computer Science	Streams	Dataflow Processes

Approach

- Study the mathematical structure of signal sets
- Partial order/CPO, topological/metric space, algebra
- Study the properties of processes as relations/functions on signals
- Continuity
- Causality
- Composition
- From the declarative to the imperative

Signals

- Let T, a poset, be the set of all tags. Let $\mathscr{D}(T)$ be the set of down-sets of T.

- A signal is a function from a down-set $D \in \mathscr{D}(T)$ to some value set V,

$$
\text { signal: } D \rightarrow V
$$

- Let $S(T, V)$ be the set of all signals from downsets of T to V.

Prefix Order on Signals

- A signal $s_{1}: D_{1} \rightarrow V$ is a prefix of $s_{2}: D_{2} \rightarrow V$, denoted $s_{1} \leq s_{2}$, if and only if

$$
D_{1} \subseteq D_{2}, \text { and } s_{1}(t)=s_{2}(t), \quad \forall t \in D_{1}
$$

Prefix Order - Properties

- For any poset T of tags and set V of values, $S(T, V)$ with the prefix order is
- a poset
- a CPO
- a complete lower semilattice (i.e. any subset of signals have a "longest" common prefix)

Tagged Process Networks

- A direct generalization of Kahn process networks

$(y, z)=F(x)$
where (y, z) is the least solution of the equations
$y=P(x, z)$
$z=Q(y)$
- If processes P and Q are Scott-continuous, then F is Scott-continuous.

Timed Signals

- Let $T=[0, \infty)$, and $V_{\varepsilon}=V \cup\{\varepsilon\}$, where ε represents the absence of value, $S\left(T, V_{\varepsilon}\right)$ is the set of timed signals.

Timed Processes

$$
\begin{aligned}
D= & D_{1} \cap D_{2} \\
s(t)= & s_{1}(t), \text { when } s_{1}(t) \in V \\
& s_{2}(t), \text { otherwise }
\end{aligned}
$$

$$
D_{2}=D_{1} \oplus\{1\} \cup[0,1)
$$

$$
s_{2}(t)=s_{1}(t-1) \text {, when } t \geq 1
$$

$$
\varepsilon, \text { when } t \in[0,1)
$$

A Timed Process Network

Causality

- A timed process P is causal if
- It is monotonic, i.e. for all s_{1}, s_{2}

$$
s_{1} \leq s_{2} \Rightarrow P\left(s_{1}\right) \leq P\left(s_{2}\right)
$$

- For all $s: D_{1} \rightarrow V_{1}, P(s): D_{2} \rightarrow V_{2}$

$$
D_{1} \subseteq D_{2}
$$

- A timed process P is strictly causal if it is monotonic, and
- For all $s: D_{1} \rightarrow V_{1}, P(s): D_{2} \rightarrow V_{2}$

$$
D_{1} \subset D_{2} \text { or } D_{2}=[0, \infty)
$$

Causality and Continuity

- Neither implies the other.
- A process may be continuous but not causal, e.g. "lookahead by 1".
- A process may be causal but not continuous, e.g. one that produces an output event after counting an infinite number of input events.

Causal Timed Process Networks

$(y, z)=F(x)$
where (y, z) is the least solution of the equations $y=P(x, z)$ $z=Q(y)$

- If processes P and Q are causal and continuous, and at least one of them is strictly causal, then F is causal and continuous.

Discrete Event Signals

- A timed signal $s: D \rightarrow V_{\varepsilon}$ is a discrete event signal if for all $t \in D$

$$
s^{-1}(V) \cap[0, t] \text { is a finite set }
$$

$$
\begin{array}{ll}
\operatorname{dom}(s)=[0, \infty) & \text { DE, Non-Zeno } \\
s(k)=1, k=0,1,2, \ldots & \\
\operatorname{dom}(s)=[0, \infty) & \text { Not DE } \\
s(1-1 / k)=1, k=1,2, \ldots & \\
\operatorname{dom}(s)=[0,1) & \text { DE, Zeno } \\
s(1-1 / k)=1, k=1,2, \ldots &
\end{array}
$$

Discrete Event Signals - Properties

- For $T=[0, \infty)$ and any set V of values, the set of all discrete event signals with the prefix order is
- a poset
- a CPO
- a complete lower semilattice (i.e. any subset of signals have a "longest" common prefix)

A Discrete Event Process Network

A Sufficient Condition for Non-Zeno Composition

$(y, z)=F(x)$
where (y, z) is the least solution of the equations $y=P(x, z)$ $z=Q(y)$

- If processes P and Q are discrete, causal and continuous, and at least one of them is strictly causal, then F is discrete, causal and continuous.
- F is non-Zeno in the sense that if x is nonZeno, $F(x)$ is non-Zeno.

Conclusions

- Progress in developing the foundation of the tagged signal model
- Extend Kahn process networks to tagged process networks
- Develop discrete event semantics as a special case of tagged process networks
- Develop a sufficient condition for the non-Zeno composition of discrete event processes

