
1

6th Biennial Ptolemy 
Miniconference

Berkeley, CA
May 12, 2005

Ptolemy Project Status and 
Overview 

Edward A. Lee
Ptolemy Project Director, UC Berkeley

Lee, Berkeley 2

Software Legacy of the Project

Gabriel (1986-1991)
Written in Lisp
Aimed at signal processing
Synchronous dataflow (SDF) block diagrams 
Parallel schedulers
Code generators for DSPs
Hardware/software co-simulators

Ptolemy Classic (1990-1997)
Written in C++
Abstract Actor Semantics
Multiple models of computation
Hierarchical heterogeneity
Dataflow variants: BDF, DDF, PN
C/VHDL/DSP code generators
Optimizing SDF schedulers
Higher-order components

Ptolemy II (1996-2022)
Written in Java
Behavioral polymorphism
Multithreaded
Network integrated and distributed
Modal models
Sophisticated type system
CT, HDF, CI, GR, etc.

Each of these served 
us, first-and-foremost, 
as a laboratory for 
investigating design.

Focus has always 
been on embedded 
software.



2

Lee, Berkeley 3

And Most Recently…

Kepler (2003-?)
Scientific workflows
Web services harvester
Computational grid integration
Semantic types
Browser interface
Database integration
“R” integration
Sensor data streaming
XML and XSLT integration
…

Lee, Berkeley 4

Where it started: SDF: Synchronous Dataflow 
and the Balance Equations (1985-86)

















−
−

−
=Γ

102
120
011
















=

3

2

1

q
q
q

q















==Γ
0
0
0

0
r

q

Actor 1

Connector 1
balance equations

firing vector

production/consumption matrix



3

Lee, Berkeley 5

Gabriel and Ptolemy Classic Leveraged SDF to 
Generate Parallel Code

SDF model, parallel schedule, and synthesized DSP assembly code (1990)

It is an interesting (and rich) 
research problem to minimize 
interlocks in complex multirate
applications.

Lee, Berkeley 6

Many Scheduling and Optimization Problems 
(and Some Solutions) Resulted

Optimization criteria that might be applied:
Minimize buffer sizes.
Minimize the number of actor activations.
Minimize the size of the representation of the 
schedule (code size).

See S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, 
Software Synthesis from Dataflow Graphs, Kluwer
Academic Press, 1996, for a summary of the single 
processor optimization problems.



4

Lee, Berkeley 7

Gabriel and Ptolemy Classic Provided 
Cosimulation of Hardware and Generated 
Software

An SDF model, a 
“Thor” model of a 2-
DSP architecture, a 
“logic analyzer”
trace of the 
execution of the 
architecture, and 
two DSP code 
debugger windows, 
one for each 
processor (1990).

Lee, Berkeley 8

Example: Application to ADPCM Speech Coding

Model of a 
speech coder 
generated to 
DSP assembly 
code and 
executed using 
aa DSP 
debugger 
interface with 
host/DSP 
interaction 
(1993).



5

Lee, Berkeley 9

Example: Heterogeneous Architecture with DSP 
and Sun Sparc Workstation (1995)

DSP card in a Sun Sparc
Workstation runs a portion of a 
Ptolemy model; the other portion 
runs on the Sun.

Sparc
C

DSP Card
M56K

Lee, Berkeley 10

Ptolemy Classic Example Showing 
Higher-Order Components
(adaptive nulling in an antenna array, 1995)

Ptolemy application developed by 
Uwe Trautwein, Technical 
University of Ilmenau, Germany

streams

hierarchical 
components

higher-order 
components



6

Lee, Berkeley 11

Higher-Order Components Realizing Recursion 
in Ptolemy Classic

FFT implementation in Ptolemy Classic (1995) used a partial 
evaluation strategy on higher-order components.

recursive reference

Lee, Berkeley 12

Higher-Order Components in Ptolemy II

The dynamic dataflow (DDF) domain (new to Ptolemy II in v. 
5.0) implements recursion in a similar way [due to Gang Zhou].



7

Lee, Berkeley 13

Higher-Order Expression Language in 
Ptolemy II

Higher-order components 
(actor-oriented) coupled 
with a higher-order 
expressions (functional) 
are a potentially powerful 
combination.

Neuendorffer and Zhao

Lee, Berkeley 14

What is the Ptolemy Project Really About?



8

Lee, Berkeley 15

The Ptolemy Project is About
Actor-Oriented Design

Actor orientation:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through 
an object is 

streams of data

class name

data

methods

call return

What flows through 
an object is 

sequential control

Object orientation:

Lee, Berkeley 16

Actor-Oriented vs. Object-Oriented

The figure at the 
left shows the use 
of object-oriented 
web services for a 
“microarray data-
analysis scenario 
for identifying 
targets in drug 
discovery.” The 
authors explain, 
“the numbered 
lines are the steps 
in the analysis 
path.”From Gao & Hayes, “Integrating Biological Research 

through Web Services,” Computer, March, 2005.



9

Lee, Berkeley 17

The First (?) Actor-Oriented Platform
The On-Line Graphical Specification of Computer Procedures
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen

Partially constructed actor-oriented model with 
a class definition (top) and instance (below).

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother, 
Ivan Sutherland) to create the first actor-oriented 
programming framework.

Lee, Berkeley 18

Your Speaker in 1966



10

Lee, Berkeley 19

Modern Examples of Actor-Oriented 
Platforms

Simulink (The MathWorks)
LabVIEW (National Instruments)
Modelica (Linkoping)
OPNET (Opnet Technologies)
Giotto and xGiotto (UC Berkeley)
Polis & Metropolis (UC Berkeley)
Gabriel, Ptolemy, and Ptolemy II (UC Berkeley)
OCP, open control platform (Boeing)
GME, actor-oriented meta-modeling (Vanderbilt)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)
ROOM, real-time object-oriented modeling (Rational)
Easy5 (Boeing)
Port-based objects (U of Maryland)
I/O automata (MIT)
VHDL, Verilog, SystemC (Various)
…

Lee, Berkeley 20

Ptolemy II: Our Laboratory for Actor-Oriented 
Models of Computation

Director from an 
extensible library 
defines component 
interaction semantics

Extensile, behaviorally-
polymorphic component 
library.

Visual editor supporting an abstract syntax

Type system 
for transported 
data

Concurrency management supporting 
dynamic model structure.



11

Lee, Berkeley 21

Models of Computation
Implemented in Ptolemy II

CI – Push/pull component interaction
Click – Push/pull with method invocation
CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DDF – Dynamic dataflow
DE – discrete-event systems
DDE – distributed discrete events
DPN – distributed process networks
FSM – finite state machines
DT – discrete time (cycle driven) 
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

Most of 
these are 
actor 
oriented.

Lee, Berkeley 22

Ptolemy II Extension Points

Define actors
Interface to foreign tools (e.g. Python, MATLAB)
Interface to verification tools (e.g. Chic)
Define actor definition languages
Define directors (and models of computation)
Define visual editors
Define textual syntaxes and editors
Packaged, branded configurations

“Domains” are extensions built on the core infrastructure.



12

Lee, Berkeley 23

What have we done recently?

Lee, Berkeley 24

Modeling and Design of Wireless Networked 
Systems

VisualSense: 
Modeling of 
wireless sensor 
networks as an 
extension of DE. 
[Baldwin, Kohli, Liu, 
Zhao]

VIPTOS: Design of 
software for 
wireless sensor 
network motes in 
TinyOS/nesC. 
[Cheong, coming 
soon]



13

Lee, Berkeley 25

Actor-Oriented Type Systems
Classes, Subclasses, and Inheritance

instance

instance

subclass

inherited actors

override actors

local class
definition

execution

This type system 
builds on abstract 
syntax (not 
semantics) so it 
applies very broadly 
to actor-oriented 
models, including 
hybrid systems.

Lee, Liu, Neuendorffer

Lee, Berkeley 26

Semantics

Clean, clear, and rigorous semantics for 
discrete-event, continuous-time, and hybrid 
systems [Cataldo, Liu, Matsikoudis, Zheng]



14

Lee, Berkeley 27

Stochastic Hybrid 
Systems

Stochastic 
hybrid systems 
in Ptolemy II 
are Monte-
Carlo models of 
nondeterminism

Example of random 
“spontaneous 
transitions” by Lee and 
Zheng, based on 
suggestion by John 
Lygeros.

Lee, Berkeley 28

Other Key Results

Reconfiguration analysis [Neuendorffer]
Generalized dependency analysis [Neuendorffer, Zheng]
The Cal actor language [Eker and Janneck]
Java code generation [Neuendorffer]
Modal model semantics [Liu, Zhou (Rachel)]
Mixed procedural and event semantics [Cheong]
Unbounded time, controlled precision [Zheng]
Nondeterministic merge in PN [Lee, Xiaowen Xin (LLNL)]
Giotto + Ptolemy II package [Brooks]
Communications library [Zhou (Rachel)]
Image and video library [Yeh]
Scratchpad memory management from SDF [Kohli]



15

Lee, Berkeley 29

Acknowledgements

Recent PhD graduates
Steve Neuendorffer (Xilinx)
Yuhong Xiong (HP Labs)

Recent Postdocs
Jörn Janneck (Xilinx)

Recent masters graduates
Vinay Krishnan
Sanjeev Kohli
James Yeh

Current sponsors
Agilent
Hewlett-Packard
Escher Institute
National Science Foundation
Toyota

Current students
Adam Cataldo
Elaine Cheong
Thomas Huining Feng
Xiaojun Liu 
Eleftherios Matsikoudis
Yang Zhao 
Haiyang Zheng
Gang Zhou 
Rachel Zhou 

Staff
Christopher Brooks
Mary Margaret Sprinkle
Mary Stewart


