
1

Hybrid-Type Extensions for Actor-Oriented Modeling
(a.k.a. Semantic Data-types for Kepler)

Shawn Bowers & Bertram Ludäscher
University of California, Davis
Genome Center & CS Dept.

May, 2005

Outline

1. Hybrid Types

2. Hybrid Types and Scientific Workflow Design

3. Super Rapid Prototyping: The “Sparrow Family of
Languages”

4. Next Steps: Adding a Hybrid-Type System to Kepler

2

Hybrid Types

Hybrid Types: Superimposing Semantics

Separation of Concerns:

Conventional Data Modeling (Structural Data Types)

• E.g., XML Schema / DTD, etc.

Conceptual Data Modeling (Semantic Types)

• Drawn from ontologies (expressed in Description Logic)
• Capturing domain knowledge (e.g., biodiversity, ecology)

Explicit (external) linkages (Semantic Annotations)

• Simple links (one concept per item)
• Links expressed as constraints (logical mappings)

3

Hybrid Types: Superimposing Semantics

table

meas

site spp bm
string string double

plot
string

T1 :=
*

Datatypes

a relational table of measurements

list

spp
string

T2 :=
*

a list of strings

Hybrid Types: Superimposing Semantics

table

meas

site spp bm
string string double

plot
string

T1 :=
*

SpeciesBiomass ⊑ Measurement ⊓ ∃item.Species ⊓
∃prop.Biomass ⊓ ∃loc.Location

“Species biomass is a measure of the amount of biomass
of a particular species within a location.”

SpeciesCommBiomass ⊑ SpeciesBiomass ⊓ ∃loc.Community

“Species community biomass is a species biomass within
a community.”

SpeciesCommBiomass

Semtypes

table/X:meas => X:SpeciesCommBiomass

each table/meas instance
is a measurement

4

Hybrid Types: Superimposing Semantics

table

meas

site spp bm
string string double

plot
string

T1 :=
*

SpeciesBiomass ⊑ Measurement ⊓ ∃item.Species ⊓
∃prop.Biomass ⊓ ∃loc.Location

“Species biomass is a measure of the amount of biomass
of a particular species within a location.”

SpeciesCommBiomass ⊑ SpeciesBiomass ⊓ ∃loc.Community

“Species community biomass is a species biomass within
a community.”

SpeciesCommBiomass

Semtypes

table/X:meas, X/Y:site, X/Z:plot =>
X:SpeciesCommBiomass, C=f(Y,Z),
(X,C):loc, C:Community,

Community

Hybrid Types: Superimposing Semantics

table

meas

site spp bm
string string double

plot
string

T1 :=
*

SpeciesBiomass ⊑ Measurement ⊓ ∃item.Species ⊓
∃prop.Biomass ⊓ ∃loc.Location

“Species biomass is a measure of the amount of biomass
of a particular species within a location.”

SpeciesCommBiomass ⊑ SpeciesBiomass ⊓ ∃loc.Community

“Species community biomass is a species biomass within
a community.”

SpeciesCommBiomass

Semtypes

table/X:meas, X/Y:site, X/Z:plot,
X/U:spp =>

X:SpeciesCommBiomass, C=f(Y,Z),
(X,C):loc, C:Community,
(X,U):item, U:Species,

Community
Species

5

Hybrid Types: Superimposing Semantics

table

meas

site spp bm
string string double

plot
string

T1 :=
*

SpeciesBiomass ⊑ Measurement ⊓ ∃item.Species ⊓
∃prop.Biomass ⊓ ∃loc.Location

“Species biomass is a measure of the amount of biomass
of a particular species within a location.”

SpeciesCommBiomass ⊑ SpeciesBiomass ⊓ ∃loc.Community

“Species community biomass is a species biomass within
a community.”

SpeciesCommBiomass

Semtypes

table/X:meas, X/Y:site, X/Z:plot,
X/U:spp, X/B:bm =>

X:SpeciesCommBiomass, C=f(Y,Z),
(X,C):loc, C:Community,
(X,U):item, U:Species,
(X,B):prop, B:Biomass.

Community
Species Biomass

Hybrid Types: Superimposing Semantics

Searching
– Concept-based, e.g., “find all datasets containing biomass

measurements”

Merging/Integrating
– Combining heterogeneous sources based on annotations
– Concatenate, Union (merge), Join, etc.

Transforming
– Construct mappings from schema S1 to S2 based on annotations

Semantic Propagation
– “Pushing” semantic annotations through transformations/queries

6

Semantic Annotation Propagation

Capture I/O constraints
– Similar to unit type constraints
– Can enable automated metadata creation (annotation

“propagation”)
– Can help refine ontologies and existing annotations

Semantic Annotation Propagation

table/X:meas, X/Y:site, X/Z:plot,
X/U:spp, X/B:bm =>

X:SpeciesCommBiomass, C=f(Y,Z),
(X,C):loc, C:Community,
(X,U):item, U:Species,
(X,B):prop, B:Biomass.

table

meas

site spp bm
string string double

plot
string

T1 :=
*

seasonal
species

p1::T1
p3::T3

p3.obs(site, plot, spp, bm) :-
p1.meas(site, plot, spp, bm),
p2.spp(spp).

Port 1 Annotation

Actor I/O constraint (approx.)

table

obs

site spp bm
string string double

plot
string

T3 :=
* table/X:obs, X/Y:site, X/Z:plot,

X/U:spp, X/B:bm =>
X:SpeciesCommBiomass, C=f(Y,Z),
(X,C):loc, C:Community,
(X,U):item, U:Species,
(X,B):prop, B:Biomass.

Port 2 “Chased” Annotation

p2::T2

7

Hybrid Types and Scientific Workflow Design

Workflow Design Primitives

End-to-End Workflow Design and Implementation

– Viewed as a series of primitive “transformations”
– Each takes a WF and produces a new WF
– Can be combined to form design “strategies”

W0 t
W1

W2

Wm

Wn

…

t

t

Workflow
Design

Workflow
Implementation

Top-Down

Bottom-Up

Input Driven

Output Driven
Structure Driven

Semantic Driven

Task Driven
Data Driven

8

Workflow Design Primitives

Semantic types and Actor Oriented Modeling:

– Actors and Workflows: can have semantic types conceptually
describing their “function”

– Ports: can have semantic types conceptually describing what
they consume and produce

– I/O Constraints: a general form of constraint between input and
output (e.g., like unit constraints) … approximating the function
of an actor

Basic Design Primitives Inherited from Ptolemy

Basic Transformations Starting Workflow Resulting Workflow

t1: Entity Introduction
(actor or data connection)

t2: Port Introduction

t6: Data Connection

t4: Hierarchical Abstraction

t5: Hierarchical Refinement

t3: Datatype Refinement
(s’ s, t’ t) s′

t7: Director Introduction

Resulting Workflow

ss t t t′

9

Additional (Planned) Design Primitives for Semantic Types

Extended Transformations Starting Workflow Resulting Workflow

t9: Actor Semantic Type
Refinement
(T′ T)

T

t12: I/O Constraint
Strengthening
(ψ → ϕ)

t10: Port Semantic Type
Refinement
(C′ C, D′ D)

C

t14: Adapter Insertion

T′

t11: Annotation
Constraint Refinement
(α′ → α) s

Cα1

ψ

t15: Actor Replacement f f′

t16: Workflow Combination
(Map)

t13: Data Connection
Refinement

…f1

f2

f1…
f2

ϕ

Resulting Workflow

D C′ D C D′

t

Dα2 α′1
t

Dα2

s

C α1

t

Dα′2
s

C

Adapters for Semantic and Structural Incompatibility

Adapters may:

– be abstract (no impl.)

– be concrete

– bridge a semantic gap

– fix a structural mismatch

– be generated automatically
(e.g., Taverna’s “list mismatch”)

– be reused components
(based on signatures)

C1 C1′ D1′C1

C2

C D C C′ D′ D

D D
C2 C2′ D2′

f2f1 [S] S′ T [S][S′]
f1 [T]f2

map

f2f1 [[S]] S′ T [[S]][[S′]]
f1 [[T]]f2

map
map

10

Applying the Replacement Primitive

C
f

D

C′
f ′

D′

general
replacement

C
f

D

C′
f ′

D′

unsafe
replacement

C
f

context-sensitive
replacement
(“wiggle room”)

D′C′ D

C
f

D′′C′′ D

C C′
D D′

C,C′ overlap (e.g., C C′)
D,D′ overlap (e.g., D D′)

C C′′ (e.g., C′ C′′)
D D′′ (e.g., D′ D′′)

– General replacement doesn’t consider surrounding connections
– Context-sensitive replacement gives more “wiggle room” by

“tuning” the actors semtypes based on connections

Workflow Elaboration

Adapter insertion, replacement, and search provide a
powerful mechanism for workflow “elaboration”:

1. Given an initial, user specified set of connected “abstract”
actors

2. Repeatedly search for replacement “concrete” actors (atomic
and composite)

3. At each step, insert adapters when necessary

4. Allow user to select returned workflows to be combined

11

Super Rapid Prototyping:
The Sparrow “Family of Languages”

The “Sparrow Family of Language”

Basic Idea: Have both Machine and Human
readable syntax

Sparrow-DL
Description logic

Sparrow-DTD
Datatypes, variant of XML DTDs

Sparrow-Annotate
Configuring concepts; linking datatypes and ontologies

Sparrow-SWF
KSW-Based MoML Metadata

Sparrow-Rule
Fancy stuff, like type constraints (a la unit types), function approximation,

and misc. other constraints

12

The “Sparrow Family of Languages”

Sparrow-SWF

Sparrow-DL

Sparrow-DTD

Sparrow-Toolkit Operations

Sparrow-Toolkit (example) Operations
– Is w1 semantically and/or structurally well typed?
– What can be semantically connected to a3?
– Insert “abstract” adapter between a3 and a4
– What can replace (e.g., implement) the adapter?
– …

a1 a3 a4
p1::
[string]

p1::
string

p2::
int

p1::
string

P2::
{price=string,
cond=string,
seller={…}}

Author ISBNAuthor ASIN AMSQuote

w1

13

Future Steps: Adding a Hybrid-Type System to Kepler

Concept-based Actor Search
– Implemented as proof-of-

concept
• About to undergo major

revision
• Additional operations

slated for next Kepler
Release (data search,
actor-based port search,
etc.)

Biggest Challenges
– Building/searching a

repository …
– Making changes to MoML

(see KSW)
– GUI changes
– Ontology management

Current and Future Implementation

Workflow
Components

(MoML)

Ontologies
(OWL)

Default + Other

Semantic
Annotations

urn ids
instance
expressions

