
1

Workflow Exchange and Archival: The KSW File 
and the Kepler Object Manager

Shawn Bowers 
(For Chad Berkley & Matt Jones)

University of California, Davis
May, 2005

Outline

1. The Kepler Object Manager

2. Archival and Exchange via KSW Files

3. Local Object Cache

4. Work in Progress (literally)



2

Motivation

In SEEK (and generally, Kepler) we:

Envision a large number of science-specific actors
• E.g., ecology, biodiversity, geoscience, bioinformatics, chemistry 

Envision a large number of available data sets
• Some may be fairly large; already various “collections” (e.g., LTER, 

GEON)

Want to enable search / discovery of actors, datasets, and 
workflows

Want to enable wide-scale sharing and re-use of data and 
workflows (and their components) across disciplines

… and have desired more than CVS to accomplish these goals

Managing distributed collections of workflow “objects”

Remote
WFs/Actors Datasets Datasets WFs/Actors

Local

Download
Publish
Search
Archive

WFs
Actors

Data

Archived 
WFs

WFs
Actors

Data

Archived 
WFs

Kepler Object
Manager



3

Main Issues and Goals

Handle various kinds of objects
– Workflows, Actors, Datasets, Libraries, 

Applications, Ontologies, Metadata, …

Transport objects
– Publish to and download from remote 

repositories
– Recognize local versus remote objects

Search for objects
– Both local and remote repositories w/in 

Kepler

Version objects
– E.g., managing conflicts in dependency 

chains

Enable “functional” groups
– Core group plus packages, e.g., 

biodiversity, geospatial, R, etc.

Kepler Object
Manager

WFs/Actors Datasets

Overall Architecture

Life-Science Identifiers (LSIDs)
– Similar to DOIs (urn’s, etc.)
– Includes (some) versioning support
– Well-defined APIs

Kepler Scientific Workflow (KSW) Files
– An archive/jar file of objects
– KSW Metadata (a la MoML)
– For publish/download/archive/groups

EcoGrid 
– Remote Access/Query
– A “thin” client / protocol

Local Object Repository
– Object retrieval, indexing, etc.

Local Object Cache
– Managing local vs. remote objects
– Dynamic class loader

Kepler Object
Manager

WFs/Actors Datasets

KSW

Cache
Manager

Local
Repository



4

An archive/jar file of objects
– Actor code and metadata, libraries; Dataset, metadata, etc.
– A manifest (what’s in the file)

All objects in KSW files have associated LSID identifiers
– An LSID is a urn, e.g., urn:lsid:kepler.org:actor:1000:2

Objects have associated metadata files (basically MoML) 
– Distinguish between “object definitions” and “object 

references”
• Objects within a KSW file have corresponding definitions
• Dependent objects not included are denoted via references

– Semantic types, dependency information, ports and types, etc.

KSW Files

Authority Namespace OID Version (opt.)

KSW Metadata example (notional)

Kepler Object
Manager

WFs/Actors Datasets

KSW-File (jar)

Cache
Manager

Local
Repository

Publish New
Workflow

Creates

New Actor Classes

New Libraries

KSW Metadata
(MoML + ID)

Workflow
Metadata
(MoML + ID)

id

refs

Manifest

NOTE: Only *new*
classes/libraries/etc.
are included 
…
known via object 
manager

Unpacks



5

Local Object Cache

• Helps manage LSIDs
– Creates them locally (for local actors, datasets, etc.)
– Resolves LSIDs (both local and remote)
– Handles publication (local id -> repository id, etc.)

• Support for packing/unpacking KSW files

• Provides simple database-like capabilities
– “Persistent” storage / file indexing
– Result caching (e.g., for remote queries)
– Temporary files
– Object indexing (e.g., dependency graphs, etc.)

• Handles multiple formats (within Kepler)
– Stream versus File access
– Representation conversion (e.g., binary interleaved, ascii grid)

Work In Progress

Still much to do …
– Still finalizing Object-Manager interfaces / APIs 
– The object cache is partly implemented
– Simple KSW files can be packed / unpacked
– The KSW metadata format still being finalized

• Working on MoML parsing, handling ids, etc. 
• Defining properties, like semtypes, dependencies, refs, etc. 
• We have a simple implementation of lsids for actor lib.

Our goal is to leverage Ptolemy’s strengths …
– Most of what we have added / plan to add is layered on top of 

Ptolemy
– We want well-defined, generic interfaces
– We are soliciting volunteers !


