Embedded S/W Development Using
PTII

Modeling Extensions, Data
Representation, Compilation

Zoltan Kemenczy, Sean Simmons
Research in Motion Limited

5th Biennial Ptolemy Miniconference
Berkeley, CA, May 9, 2003

Contents

Motivation and Observations
Example Model

Modeling Extensions
Compilation

=
LE
= 5_5-'? Ptolemy Miniconference - Embedded S/W Development Using PTII 2

Motivation

Goal: Minimize impact of application changes and target changes
Goal: Reuse test vectors/harness
Change Development Strategy
FROM TO
1. Simulate/Test Key Simulate/Test Entire System
Algorithms Only in High Level in High Level Language tool

Language tool . . .
“ o 2. Refine HLL simulations by
2. .Implemem“ by hand": specifying:

Algorithms bata bath ot

Application control flow and ara path representation

task structure Overflow and precision loss
methods.

Port tests
Select data representation 3. Compile result for target
Select overflow and once all data types are
precision loss methods “concrete"”

3. TIterate 1&2 until
satisfactory test result are
achieved
= 55"? Ptolemy Miniconference - Embedded S/W Development Using PTIl 3
Observations

Two basic types of code "leaf” & "structure”

"Structure”(MoC/Connections)
Application specific
Control/data flow

Optimizations for memory
use/re-use (registers,
queues), schedules

Compilation “easy"

“Leaf" (Actors)
Target specific
Basic algorithms (+, *, FIR)
Optimization to take

advantage of target specific
facilities - e.g. dual MAC, ACS

Compilation “difficult”

Iteration

80%-20% rule

Place one level of iteration in
atomic actors - can make use
of target H/W looping

Use array data types for
specifying implicit iteration
Block processing approach
Scalars are degenerate arrays

Ptolemy Miniconference - Embedded S/W Development Using PTIl 4

Observations - Example

“Leaf" "Structure”

void Abs(int n, 515 *in, 515 *out) VOId RXO{ .
{ int n = ReadAvail();

if (n> MIN_SAMPLES) {
S15 buf[MAX_SAMPLES];
S15 buf2[MAX_SAMPLES];

int i;

for (i=0;i<n; i++){
outfi] = in[i]>= 0 ? in[i] : -in[i DetectReset();
} ResampleRead(n , buf);
} RunAfc(n, buf);
DownConvert(n, buf);
Detect(n, buf, buf2);

}
}
== 55"? Ptolemy Miniconference - Embedded S/W Development Using PTIl 5
Example Model
+ GSM/GPRS
L1 Layer - Mobile Device Physical layer
Simulation
DE Director Dsp McuL 1 + Dsp, Mcull -
« Dho L L2 compilation targets
TmSi =1 Sl
’ r' E}D .1 + H/W Blocks -
"T . = simulation only
Rﬂ-li BasgBhndHw TigidCoProc Componem‘.of
encompassing test
ameﬁ' Sio pruo : P > harness

Typical variants:
VitergiCoProc (8/W X H/W)

Cra Versions

!-7’
=Za '?
E=za Ptolemy Miniconference - Embedded S/W Development Using PTIl 6

Example Model - The DSP

Measure

+ Low-latency (left side)

pugGontol tasks triggered by timing
—-| B0 signals
Dic:;cn‘;mmwln‘ VDecode AudRecee o DGTG'f'OW dr‘iven IOWer‘
e ER e EE] rate/priority tasks (e.g. 1
ey | e || el Decode / 4 Bursts)
PLE TPl FLEE=F - Test-paths designed in
R R (e.g MCU may request a
- Vdecode(data))
N + TaskRequest - Union of
- Records
Mhow + H.AL Object(s) and
| TMDirector hand-coded

Viterbi

- rroiemy winiconrerence - Embedded S/W Development Using PTIl 7

Example Model - A DSP Task

+ “request”

[ADF Director Burst Receive Task initiates HAL
control

+ “bbRxIn" HAL
events schedule
task

+ ‘“reply” generated
when finished

VerifyGain

ChangeGain

bbRxin

request

RecordUpdater
ply

" rey
SetFrequency *» |

SetGain

debug

=
LE
= :fsl'? Ptolemy Miniconference - Embedded S/W Development Using PTII 8

Example - Summary

Component Simulation | Target |Goals

MCU and DSP TM, ADF, Compiled | -Single model / feature set

SDF, FSM -Model “run” in different targets
(PTII, Target Simulation, Device)
PTII “Library” |n/a Hand- *Actors

Coded -Schedulers
*Type/Token/Port handling

HAL DE Hand- *HAL Minimal but complete
Coded *Handle different H/W

Timing, Coding, | DE H/W platforms, versions

Cipher +Simulation true to HAL APT

Radio, DE H/W

Baseband,

Comm.
= 55’_"'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 9
Contents

* Moftivation and Observations
*+ Example Model
* Modeling Extensions
- Asynchronous Data-Flow MoC
- MultiInstanceComposite
- ObjectMethod
- New Types
- Mixing Built-In and User Types
+ Compilation

= ial'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 10

Extensions: Asynchronous Data Flow
MoC

Data flow driven like SDF
Dynamic schedule like DE
No notion of time (local or global) like SDF
No global event queue like SDF
- Local queues on each port
: Loops are allowed
- Requires use of a “register” actor
- Same idea as “zero delay” in DE or Z-! in SDF.
Port rates computed like SDF
- Represent maximum number of tokens produced when fired
- Used to compute queue sizes for compilation
+ Uses fixed firing order
- Uses prefire to evaluate actor's readiness

- Repeatedly fires actors in sequence unftil all actors prefire methods
returns false

=
LE
= iﬂl'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 11

Extensions - MultiInstanceComposite

+ Same CompositeActor (MoML class), multiple (object) instances
+ Contributed as a form of HOC
Use DE or ADF MoC, contain Modal Models - typically
Examples:
- Objects (6 or more instances) representing tracked base-stations
- Logical channels within protocol stack layers

- Easy conversion of single-channel I/0 actor to multi-channel (e.g. multi-
channel FIR, same or different parameters e.g."({{taps}})[instance]"

ADF
I:l Multilnstance /O Options
Any combination below
AppSpecificSwitch
request reply
'é MultiinstanceCgmposite
opiToAll

b
v

optMultiln ' “ l optMultiOut

= ial'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 12

L A A

Extensions - ObjectMethod

HAL objects:

- are contained within TM-domain composites (s/w running on a
processor),

- control their associated h/w,

- process h/w signals and send (event) tokens to other actors (tasks).

+ The ObjectMethod actor:

- is used to access HAL objects from classes nested in TM-domain
composites,

- is aform of a “tunnelling relation” to an opaque (HAL) actor instance
with SDF semantics: all inputs must be present to fire, rate one,
output (if defined by the target method) also rate one, immediately
available.

Example: Base-band ADC Samples Receiver HAL object. Used

from Measure, Synchronize, Burst Receive classes (“tasks").

+ ObjectMethod actor safely configured using object instance
reference (ObjectToken) that also yields object class ("API").
Directors within HAL simulation blocks (DE) are also fired (by
ObjectMethod) after each invoke.

=
LE
= iﬂl'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 13

Extensions - "User” Types

Fixed-length Array Type - multi-dimensional Array Type with Anown
dimensions {N,M K,..}. Size =N x M x K x ... - 'rectangular'. Linear
storage, inner (last) dimension first. PTII arrays and matrices map
onto this type when their dimensions are known.

Variable-length ArrayType - Like above, but tokens of this type
have a variable outermost dimension {1.N, M, K,..}.

Fundamental I/0O type for our block-processing actors. Supports actor
buffer-size calculations that reflect I/0 rates

- EnumType - a set of identifiers.

UnionType - a set of Type elements, each associated with an
identifier. Identifier set is an EnumType. Represents data that
share target storage.

Exactly specifies Types that are expected to pass on a relation. Provides a
solution to the problem of passing different RecordTypes over a
?el?gion, e.g. Request/Reply interactions with actors without losing any

ields.

= ial'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 14

Extensions - Variable-Length Array

A multi-dimensional array type with known dimensions {I,J,..} that
removes the PTII scalar-, array- and matrix-type distinction
Tokens of this type have a variable outer-dimension: i=1..I
Linearized (single) index and multi-dimensional (i, k,..) index access
+ Target memory layout is along innermost (last) dimension index.
+ Type Lattice: Uknown < Vlarray < Array < General
Because Array is unsized (e size), any Vlarray may be converted to an
Array with the same number of dimensions {{..{elemType}...}}. (We avoid
this though to preserve dimension information)
Conversion/Compatibility (cf. ptolemy.data.type.Type, Typelattice)
Vlarray(elem {I,J K...}) can be converted to Vlarray(elem {L MN..}) if T <L
and J=M, K=N,... and element types are compatible
ScalarType is equiv. to Vlarray(ScalarType {1,1,..}) (# of dim as needed)
+ LUB:
Vlarray(max(leftDim[0],rightDim[0]), dim[1], dim[2],..) where dim[i] must
be same for left and right i=1..dim.length (compatible)

=
LE
= iﬂl'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 15

Extensions - EnumType

Set of identifiers, some possibly associated with specified integer
values, others “unknown"
Tokens of this type have one of the identifiers from the set as a
value
Type Lattice: Unknown < EnumType < General.

+ Conversion/Compatibility:

(In the following, typelLS = type.labelSet(), typeVS(labelSet) =
type.valueSet(labelSet))

- arglLS O thisLS
- argVS([1(thisLS,argLS)) = thisVS([(thisLS,argLS)), where “"unknown” = any
- A StringToken is convertible if O thisLS
- An IntToken is convertible if O thisVS
Compare:
- Equal: leftLS = rightLS Oright.isCompatible(left)
- Less: =Equal Oright.isCompatible(left)
LUB:
- U(enumArgs) if enumArgs compatible.

= ial'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 16

Extensions - UnionType

+ Seft of Types each associated with an identifier (*label”)

+ PTII expression parser entry:
union(*name”, {id1=tokenl, id2=token2, .. }) - registers a named union
union("name”, {idx=tokenx}) - creates the “idx" member with tokenx value,
tokenx type must equal the type of name.idx
union({id1=tokenl, id2=token2, ... } {idx=tokenx}) - creates type and token
Type Compatibility:
In the following, typelS = type.labelSet() , typeTS(labelset) =
type.typeSet(labelset)

arglLS O thisLS O argTS() = thisTS(argLS)
Note 1 - we chose type set equality (more stringent) not element-by-
element compatibility.
Note 2- {idx=tokenx} (RecordToken) is compatible with union({idx=tokenx})
* Type Compare:
- Equal: leftLS = rightLS OleftTS() = rightTS()
- Less: -Equal Oright.isCompatible(left)
LUB (note: cls = [(leftLS rightLS)):
- U(leftTs, rightTS) if leftTS(cls) = rightTS(cls), else General

=
LE
= ifl'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 17

Extensions: Built-In and User Types

+ Each user type is on a separate branch between Unknown and
General on the Type lattice ([1] Ch. 12).
+ Consequences:
- LUB(any known built-in type, user type) = General.
- LUB(user type 1, user type 2) = General.
=> Type information is lost.
+ But precise type information is essential for compilation domain
actors ®
+ User Actor Extensions (mixing and preserving types):
- User actors (dealing with 'mixed’ input types) must have an empty type
constraint list to avoid output port types evaluated to ‘General'.
- Hence user actors use type functions:
Output port type = f (input port types, output port)
- (Default type functions are incorporated into actor base classes.
Methods are provided to override default type function results.)
- Do not mix built-in and user types on different relations connected to
an input multi-port since this also yields ‘General’

= ial'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 18

Contents

* Motivation and Observations
+ Example Model
* Modeling Extensions
+ Compilation
- Strategy
- Target Actor
- Data Representation

Ptolemy Miniconference - Embedded S/W Development Using PTIl 19

Compilation Strategy - Approach

+ Use PTII as much as possible
- Type resolution
- Introspection
Target environment support

- Tokens, types, ports,
parameters, schedulers,
startup code.

- Multiple target environments
can be supported in one
model.

+ Target atomic actors

- Only support create(),
initialize(), prefire(), and
fire().

- Can be specialized based on
port/parameter types,
parameter values, target.

Hook compilation process into
“top level” actor's initialize
method to determine:

- Target data representation
selected based on ftarget
description and
port/parameter types

- Target actor specialization
based on port/parameter
types and parameter values

- Maximum inter-actor queue
sizes can be determined
based on schedule information

- Static schedule information

Compiled output produced

- "Dynamic"” uses JNI to
interact with target simulator

- "Static" exports a target
memory image in source form.

Ptolemy Miniconference - Embedded S/W Development Using PTIl 20

Compilation Strategy - Continued

Assume no garbage collector
for tokens

- Tokens still inmutable

- Store output tokens in a
circular buffer of token
instances attached fo the
output port.

- Each connected input port has
a private read pointer on the
corresponding output port's
circular buffer.

Limited Support for “run-
time" data type polymorphism
- Export type information as

part of the compilation
process for actors that need
it.

- Enables writing single
implementation of actors like
RecordAssembler

- Type information can answer
following about tokens/ports:

+ Size - in target words

- Length - total # of elements
+ Dimension length

* Number of dimensions

* Array element type

*+ Record member type

* Record member offset

+ Isscalar, fixed length array,
variable length array, record,
union, ...

Ptolemy Miniconference - Embedded S/W Development Using PTIl 21

Compilation - Target Actors

Atomic
PTIT “"Front End"
- Handles type resolution issues
- Handles specialization issues
- Uses proxy strategy to
integrate back end into PTII
environment.
Target Specific "Back End"
- create(), initialize(), prefire()
and fire() code.
- Java version as “reference”

Test cases for Java reference
are reused for other target
back ends.

Composite with Director

Support for TM, ADF, FSM,
and SDF.

Implemented as part of the
target environment
Composites without directors
are removed during
compilation.

Same “interface” as atomic
actors: create(), initialize(),
prefire(), and fire().
Compile-out some actors like:
BusAssembler/Disassembler,
ZeroDelay, SampleDelay, some
RecordAssembler/
Disassemblers

Ptolemy Miniconference - Embedded S/W Development Using PTIl 22

Compilation - Target Actor Trade-
of fs

* Granularity of atomic actors
- Use application to guide development
- E.g. Butterfly actor vs FFT actor.
* Specialization of atomic actors
- Development time vs. runtime overhead.
- Different targets can make different trade-offs

- E.g. In add actor fest overflow mode at runtime or create multiple
specializations of add actor, one for each overflow mode. Use of a
template strategy can help here.

+ Appropriate array dimension handling

- “Vector actors” “linearize" multi-dimensional arrays.

Works well for element-by-element operations like add, multiply, etc.

- Actor loop overheads vs. explicit dimension reduction/aggregation
actors (and associated data copying)

- E.g. Max actor with two dimensional input which is to act over
"columns”. Can create specialized actor implementation that contains
double loop, or can explicitly convert two dimensional input array to a
sequence of one dimensional arrays and then collect the scalar results
back into a one dimensional output array.

==
LE
= iﬂl'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 23

Compilation - Actor Specialization

+ Example: ALU (vectorized abs, add, subtract, multiply, negate...)

- PTII/java. Specialized based on operation category/operand count

ALUBinary (Add,Subtract ,Multiply..), ALUUnary (Abs, Negate,...)
ALUUnaryWithParameter (Scale, Shift,...)

- C: Additional specialization based on operation, port and parameter
types:
ALUBinaryS1_15MultS1_15, ALUAddSW16
- DSP Asm: Additional specialization based on rounding and overflow.
Specialization logic part of PTII actor java code, queried by
compiler, used for dynamic/static actor linking with target
composite.

= ial'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 24

"API" - Data/Interface Specification

Target-Polymorphism
Static / Dynamic

PTII eg—by "API" —Pe XML
Internal Types/Data External, Model Boundary
Interfaces (HAL, Other S/W
Layers)

Target Specification (Proc. X Lang.)

Source Code Simulators
(static) (dynamic)

Ptolemy Miniconference - Embedded S/W Development Using PTIl 25

“"APT" - cont'd

API: abstract (target-independent) type, class, and instance data
specification. Used for:
- Model boundary interfaces (external s/w layers, HAL) - hand-coded
- PTII types / tokens within the compilation domain (reflect)
“Target” specification resolves abstract API attributes to target
attributes (available integral type size and alignment properties,
memory word-size, endianness) during compilation.
- Sizeof, offsetof queries
+ Exports to target source code (“static” compilation)
+ PTII <-> target memory translations ("dynamic” compilation using
target simulators loaded by PTIT)

Ptolemy Miniconference - Embedded S/W Development Using PTIl 26

“"API" - XML Elements

<target> - list of applicable target specifications

<include> - specification nesting, class-path relative
Scalars

<int> - width, signed, value
+ <real> - width, fractionalWidth, exponentWidth, signed, value
+ <complex> - (real, imag) of <real> type, value
- <string> - traditional | hashed, value

<enum> - (<member>)* - names only, value
Aggregates
<array> - element type, dimensions - “fixed-length” arrays
<vlarray> - (outer length, <array>) - “variable-length” arrays
<struct> - (<member>)*
+ <union> - ([selector,](<member>)*)

<«function> - (<inputs>, <outputs>)

<class> - (all of the above)

=
LE
= iﬂl'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 27

Testing Approach

Ptolemy-embedded: PTII model with contained "Composite-Under-
Test" automatically iterated over set of target environments
(PTII, C-Simulation, Asm-Simulation).
Using jython to:

- create fest PTII “configuration”

- load moml| test models containing unit-under-test

- compute test cases based on test variable sets (setl X set2 X ..)

- set model test case parameters

- run

- report
Device-embedded target environment: “Composite-Under-Test"
linked with a target test shell to run in device under PTIT model

control (from a host, input/output ports "tunnelled” over comm.
link)

= ial'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 28

Conclusions

We've made good progress
There's lot more to be done
We must be crazy ©

==
LE
= iﬂl'? Ptolemy Miniconference - Embedded S/W Development Using PTIl 29

