The Component Interaction Domain:
Modeling Event-Driven and Demand-
Driven Applications

Xiaojun Liu
Yang Zhao

5th Biennial Ptolemy Miniconference
Berkeley, CA, May 9, 2003

Outline

* Interaction between Software Components

- Software Framework Examples
- The CORBA Event Service
- The Click Modular Router

* The Component Interaction (CI) Domain
- Demonstration
« Current Status and Future Work

Ptolemy Miniconference 2

Aspects of Component Interaction

* Making sense of the information exchanged

- E.g. a pure event notification, or an array of
floating-point humbers

- Managed by the type system
* The communication protocol

- E.g. rendezvous, or read from/write to a FIFO
queue

- Managed by a model of computation

Ptolemy Miniconference 3

Aspects of Component Interaction

* Initiation
- Which participant initiates the interaction?
- What components can initiate interaction?
- Conftrol flow

- How do interacting components obtain the
execution context?

- Timing...

Ptolemy Miniconference 4

The CORBA Event Service

* Support asynchronous, decoupled communication
between objects

PushConsumer PushSupplier
[+push(data : in any) [+disconnect_push_supplier)
[+disconnect push_consumer()

ProxyPushConsumer ProxyPushSupplier
[+oonnect push_: _supplier Pl [Foonnect push_¢ _consumer : PushConsumer)|
SupplierAdmin EventChannel ConsumerAdmin
[+obtain_push_consumer() : ProxyPushConsumer] [+for_consumers() : ConsumerAdmin| [+obtain_push_supplier() : ProxyPushSupplier]
[+obtain_pull_consumer() : ProxyPullConsumer |+for_suppliers() : SupplierAdmin [+obtain_puil_supplier() : ProxyPullSupplier
PuliConsumer PullSupplier
[Fdisconnec Lpull_consumer 0) +disconnect_pull_supplier()
[+pul() : any
[+try_pull(has_event : out boolean) : any|

ProxyPullConsumer ProxyPullSupplier

[+connect_pull_supplier(pull_supplier : PullSupplier) [+connect_pull_c _consumer : PullConsumer)|

Ptolemy Miniconference 5

The Push Model

-
\u
push()
ey
o] S

* The supplier initiates the transfer of data
* The consumer reacts to supplied data

*+ The event channel provides the execution context
for the consumer

Ptolemy Miniconference 6

The Pull Model

e

pull()
o
R NG
e

The consumer initiates the transfer of data
The supplier reacts to demand of data

The event channel provides the execution context
for the supplier

Ptolemy Miniconference 7

Mixed Models

* Push supplier and pull consumer
- The event channel acts as an event queue

* Pull supplier and push consumer

- The event channel must act as an active
mediator for any interaction o take place

Ptolemy Miniconference 8

Complex Mixture

pull() M w()

push()

push\‘ SUPpller/ pull(
pull() Consumer STy
Consumer

Suppher‘/
Consumer' pu”()

Fpull)
. —_—, Suppher/
push() push() Consumer‘ push()

v\pun() lpull()
==

Ptolemy Miniconference 9

The Click Modular Router

+ Elements are C++ objects that interact by making
method calls

* Packets are passed as method argument or return value

+ Flexible, configurable, and highly efficient routers
have been built with this software architecture

‘ F:vmrD{*l‘iw* +> N{:Hd »‘ ‘ ‘ ‘ ‘ ‘EI b} N::H[Et -|> ToDevice
recefve ____push (p)
packet p — | —_Push (p)
e
return____ enquewep
‘__'_rtzt_‘.}_l’ﬂ___, - 4110 ready to
pull() o e————"""" transmit
dequeue p e
2 it —Ieturn
and return it —np return b
T send p

E. Kohler et al., “The Click Modular Router,” ACM Transactions on Computer Systems, 18(3),
August 2000, pages 263-297.

Ptolemy Miniconference 10

The Component Interaction Domain

* Push/pull interaction
- Active/passive actors
* Multi-threaded execution

Source Scale Cl Director

] I’SCE’I{L Il Sk
pu pu
push = pull :|1/ pull: |

Ptolemy Miniconference 11

Push/Pull Interaction

* Push model
- Event-driven applications

Supplier Consumer/Supplier Consumer
push push

> push > push >

* Pull model
- Demand-driven applications

Supplier Consumer/Supplier Consumer

> — pullh > pull >

pull

Ptolemy Miniconference 12

Active Actors

« Active actors
initiate all
computation in the
model

- Source actors with
push output

- Sink actors with
pull input

- Actors with pull
input and push
output

Source

push

Sink

—— P

pull

pull
r—>

r—
pull

Scheduler

e r—e

push

Ptolemy Miniconference 13

Passive Actors

* Passive actors react to pushed event or

pull demand

Source

o

pull

Pull Transformer

-
pull pull
*r—r

push

Queue

Sink

—— P

push

Push Transformer

>—> I.I--»—-—-Q
push push
—
pull

Ptolemy Miniconference 14

Multi-Threaded Execution

- Each active actor has its own execution
thread

- Passive actors share the same execution
thread as the director

Source Scale Cl Director

active

Scale2

Ptolemy Miniconference 15

A Router Model in the CI Domain

This model illustrates queue management

using push and pull style communication

in distributed systems. The "Distributor”
MonitorValue - Queue length actor will route packets to the two queues.

It monitors the sizes of the queues to
—E help it make decisions.
push
] Interface - fast channel 1

Queue
.J pull S}E push B}E

push active
DataReceived Distributor dropped
= l push > push
[—

aclive
Interface - slow channel2
Pushl queuez pull
» E push E
j o active
pus
MonitorValue - Queue2 length

Authors: Xiaojun Liu and Yang Zhao

Ptolemy Miniconference 16

Cl Director

CI vs. the Click Router Architecture

- Click is a specialized, highly efficient, runtime
software architecture based on object-oriented
programming. Router elements interact by making
method calls. The control flow is fixed once the
router is built.

* The CI domain provides a more general model
architecture based on actor-oriented
programming. Actor interaction is mediated by the
director, so is more decoupled. The director (or
code generator) can partition a model and choose a
different analysis/scheduling strategy for each
part.

Ptolemy Miniconference 17

Current Status and Future Work

« Current status

- A preliminary implementation is included in the
current release

« Future work

- Design the infrastructure for building actors
with mixed push/pull input ports and output
ports

- Partitioning of CI models for scheduling and
allocating execution threads

- Explore the relation to dynamic dataflow that
uses both data-driven and demand-driven
execution strategies

Ptolemy Miniconference 18

