
1

5th Biennial Ptolemy Miniconference
Berkeley, CA, May 9, 2003

JHDL Hardware Generation

Mike Wirthlin and
Matthew Koecher
(wirthlin,koechemr@ee.byu.edu)

Brigham Young University

Ptolemy Miniconference 2Wirthlin, Koecher BYU

Motivation

• Synthesizing Hardware from Synchronous Data
Flow (SDF) Specifications

– SDF models provide natural algorithm concurrency
– SDF models are statically scheduled
– Many relevant DSP algorithms can be specified in SDF

• Increasing Use of FPGAs for Signal Processing
– Increasing density of FPGAs (1M gates for ~$20)
– Exploit hardware parallelism
– System programmability through reconfiguration

• Goal: Generate FGPA circuits from arbitrary
Ptolemy II SDF models

– Target FPGAs using BYU JHDL Design Tools
– Synthesize hardware from arbitrary actors

2

Ptolemy Miniconference 3Wirthlin, Koecher BYU

Synthesizing Hardware from SDF

• Many SDF synthesis projects rely on
predefined SDF libraries
– Actor libraries provide hardware implementation
– One to one mapping between SDF actors and

synthesized hardware
• Disadvantages of library approach

– Hardware options limited by library size
– Custom actors may require composition of many

fine-grain primitives
– Application-specific libraries often required
– Parameterized libraries often used

Ptolemy Miniconference 4Wirthlin, Koecher BYU

JHDL Hardware Generation

• Goal: synthesize hardware from arbitrary
SDF actors defined in software
– Describe custom hardware actors in software
– Convenient specification for many operations
– May coexist with library-based synthesis

• Approach
– Specify actor behavior in software (Ptolemy II)
– Specialize actor to model-specific parameters
– Extract behavior of specialized actor
– Synthesize corresponding hardware

3

Ptolemy Miniconference 5Wirthlin, Koecher BYU

Example: 3-Tap FIR Filter

Ptolemy Miniconference 6Wirthlin, Koecher BYU

Example: 3-Tap FIR Filter

• Actor composed of low-level primitives
– Multipliers, Adders, signal limiter
– Delay elements, Constants
– Correspond to hardware elements

• Relatively cumbersome to create

4

Ptolemy Miniconference 7Wirthlin, Koecher BYU

Example: FIR3Tap.java

public class SimpleFIR ... {
...
public void fire() {

int in = input.get(0); // Get token

int mac = in * c0;
mac += delay1 * c1;
mac += delay2 * c2;

if (mac > MAX) // clip result
mac = MAX;

else if (mac < MIN)
mac = MIN;

output.send(mac); // Send result

delay2 = delay1; // update memory
delay1 = in;

}
...

}

Ptolemy Miniconference 8Wirthlin, Koecher BYU

public class SimpleFIR ... {
...
public void fire() {

int in = input.get(0);

int mac = in * c0;
mac += delay1 * c1;
mac += delay2 * c2;

if (mac > MAX)
mac = MAX;

else if (mac < MIN)
mac = MIN;

output.send(mac);

delay2 = delay1;
delay1 = in;

}
...

}

Example: FIR3Tap.java

X

input

c0

∆

Xc1

+

∆

Xc2

+

>=

MIN

MAX

>=

Generated Hardware

5

Ptolemy Miniconference 9Wirthlin, Koecher BYU

Hardware Generation Approach

• Define custom actors in Java
• Create model with custom & existing actors
• Specialize actors and model
• Extract behavior of each actor

– Disassemble byte-codes of specialized actor class file
– Generate control-flow/dataflow graph (primitive operations)
– Generate composite dataflow graph (predicated execution)
– Extract internal state

• Generate a composite SDF graph (merge actor graphs)
• Perform graph/hardware optimization
• Generate hardware from synthesized SDF

– Exploit Java-based JHDL Design environment
– Generate EDIF netlist from JHDL hardware model

Ptolemy Miniconference 10Wirthlin, Koecher BYU

Specifying Custom Actor Behavior

• Custom actors can be created in Ptolemy II
– See Chapter 5 of the Ptolemy II Design Guide

“Designing Actors”
• Behavior defined in three “action” methods

– prefire() Determines ability of actor to fire
– fire() Read inputs and create new outputs
– postfire() Update persistent state

• Hardware synthesis analyzes “action”
methods to extract actor behavior

• Actors and model “specialized” using Ptolemy
II Java code generator infrastructure

6

Ptolemy Miniconference 11Wirthlin, Koecher BYU

Java Classfile Disassembly

• Actor behavior extracted directly from
compiled Java .class file
– Common, well-supported standard
– Eliminate need to parse Java source
– Contains all necessary actor information
– Tools readily available

• Soot Java Optimizing Framework
– Developed at McGill University in Montreal
– http://www.sable.mcgill.ca/soot/

Ptolemy Miniconference 12Wirthlin, Koecher BYU

Generate Actor Control Flow Graph

• Identify basic blocks
• Annotate control

dependencies
• Identify intervals

– One or more basic blocks
– Single entry point and

single exit point
– May require addition of

join nodes (with
appropriate conditional)

• Predicated execution
graph

public class SimpleFIR ... {
...
public void fire() {

int in = input.get(0);

int mac = in * c0;
mac += delay1 * c1;
mac += delay2 * c2;

if (mac > MAX)
mac = MAX;

else if (mac < MIN)
mac = MIN;

output.send(mac);

delay2 = delay1;
delay1 = in;

}
...

}

7

Ptolemy Miniconference 13Wirthlin, Koecher BYU

Generate Actor Control Flow Graph

public class SimpleFIR ... {
...
public void fire() {

int in = input.get(0);

int mac = in * c0;
mac += delay1 * c1;
mac += delay2 * c2;

if (mac > MAX)
mac = MAX;

else if (mac < MIN)
mac = MIN;

output.send(mac);

delay2 = delay1;
delay1 = in;

}
...

}

Block 0:
in = input.get(0);

mac = in * c0;
$i0 = delay1 * c1;
mac = mac + $i0;
$i0 = delay2 * c2;
mac = mac + $i0;

if mac <= MAX goto Block 2;

Block 1:
mac = MAX;
goto Block 4;

false

Block 2:
if mac >= MIN goto Block 4;

true

Block 4:
output.send(mac);
delay2 = delay1;

delay1 = in;
return;

Block 3:
mac = MIN;

false

true

Ptolemy Miniconference 14Wirthlin, Koecher BYU

Generate Actor Control Flow Graph

Block 0:
in = input.get(0);

mac = in * c0;
$i0 = delay1 * c1;
mac = mac + $i0;
$i0 = delay2 * c2;
mac = mac + $i0;

if mac <= MAX goto Block 2;

Block 1:
mac = MAX;
goto Block 4;

false

Block 2:
if mac >= MIN goto Block 4;

true

Block 4:
output.send(mac);
delay2 = delay1;

delay1 = in;
return;

Block 3:
mac = MIN;

false

true

public class SimpleFIR ... {
...
public void fire() {

int in = input.get(0);

int mac = in * c0;
mac += delay1 * c1;
mac += delay2 * c2;

if (mac > MAX)
mac = MAX;

else if (mac < MIN)
mac = MIN;

output.send(mac);

delay2 = delay1;
delay1 = in;

}
...

}

8

Ptolemy Miniconference 15Wirthlin, Koecher BYU

Merge Control Flow

public class SimpleFIR ... {
...
public void fire() {

int in = input.get(0);

int mac = in * c0;
mac += delay1 * c1;
mac += delay2 * c2;

if (mac > MAX)
mac = MAX;

else if (mac < MIN)
mac = MIN;

output.send(mac);

delay2 = delay1;
delay1 = in;

}
...

}

Block #0

Block #1

Block #2

Join

Condition

false

Block #3

Join

true Condition

false

Block #4

true

Ptolemy Miniconference 16Wirthlin, Koecher BYU

Merge Control Flow

public class SimpleFIR ... {
...
public void fire() {

int in = input.get(0);

int mac = in * c0;
mac += delay1 * c1;
mac += delay2 * c2;

if (mac > MAX)
mac = MAX;

else if (mac < MIN)
mac = MIN;

output.send(mac);

delay2 = delay1;
delay1 = in;

}
...

}

Block #0

Block #1

Block #2

Join

Condition

false

Block #3

Join

true Condition

false

Block #4

true

9

Ptolemy Miniconference 17Wirthlin, Koecher BYU

Generate Basic Block Dataflow Graph

public class SimpleFIR ... {
...
public void fire() {

int in = input.get(0);

int mac = in * c0;
mac += delay1 * c1;
mac += delay2 * c2;

if (mac > MAX)
mac = MAX;

else if (mac < MIN)
mac = MIN;

output.send(mac);

delay2 = delay1;
delay1 = in;

}
...

}

• Generate dataflow graph
for each basic block
– Vertices: Java primitive

operations
– Edges: Data dependencies

between operations
– Some parallelism extracted

from sequential byte codes

• Predicated control-flow
graph

Ptolemy Miniconference 18Wirthlin, Koecher BYU

Generate Basic Block Dataflow Graph

input.get()

in * c0

in

c0

mac + t0

mac

delay1

delay1 * c1

c1

t0

mac + t1

mac

delay2

delay2 * c2

c2

t1

mac <= MAX

mac

MAX

r0 := @this;
load.r r0;
fieldget SimpleFIR.input;
virtualinvoke getInt;
store.i i0;
load.i i0;
push 3;
mul.i;
load.r r0;
fieldget SimpleFIR.delay1;
push 5;
mul.i;
add.i;
load.r r0;
fieldget SimpleFIR.delay2;
push 5;
mul.i;
add.i;
store.i i7;
load.i i7;
push 5;
ifcmple.i label0;

Byte Code

10

Ptolemy Miniconference 19Wirthlin, Koecher BYU

Merge Dataflow Graphs

• Merge each dataflow
graph into a single
dataflow graph
– Insert into predicated

execution graph
– Resolve mutually exclusive

variable definitions with
select nodes

• Single dataflow graph for
actor behavior

output.send(int)

mac

mac >= MIN

mux

cond

macMIN

mac

mac <= MAX

true

mac + t0

mac

delay2 * c2

t0

t0

mac + t0

delay2 c2mac

delay1 * c1 in * c0

delay1

delay2

c1 in

delay1

c0

input.get()

mux

cond

MAX

mac

false

MIN

true

mac

false

MAX

Ptolemy Miniconference 20Wirthlin, Koecher BYU

Extract Actor State

public class SimpleFIR ... {
...
public void fire() {

int in = input.get(0);

int mac = in * c0;
mac += delay1 * c1;
mac += delay2 * c2;

if (mac > MAX)
mac = MAX;

else if (mac < MIN)
mac = MIN;

output.send(mac);

delay2 = delay1;
delay1 = in;

}
...

}

• State contained in class
field variables
– Read followed by a write
– Last value written to

variable is variable state
• Graph updated to contain

sample delay nodes
– Sample delay node added

for state variables

• State should be set in
postfire() method

11

Ptolemy Miniconference 21Wirthlin, Koecher BYU

Extract Actor State

public class SimpleFIR ... {
...
public void fire() {

int in = input.get(0);

int mac = in * c0;
mac += delay1 * c1;
mac += delay2 * c2;

if (mac > MAX)
mac = MAX;

else if (mac < MIN)
mac = MIN;

output.send(mac);

delay2 = delay1;
delay1 = in;

}
...

}

delay2 * c2

c2 delay1 * c1

c1

input.get()

DELAY
(delay1)

in

DELAY
(delay2)

delay2

delay1 delay1

Ptolemy Miniconference 22Wirthlin, Koecher BYU

Hardware Generation

output.send(int)

mac >= MIN

Join

Condition

MIN mac + t1

mac

mac <= MAX

mac

mac

delay2 * c2

t1

mac + t0

mac

c2 delay1 * c1

t0

in * c0

mac

c1

c0input.get()

in

DELAY
(delay1)

in

Join

Condition

MAX

MIN

mac

mac

MAX

mac

mac

DELAY
(delay2)

delay2

delay1delay1

• Generate hardware circuit
for each Java primitive
operation
– Arithmetic
– Logical operations
– Delay elements

• Create circuit in JHDL
data structure
– Circuit simulation & viewing
– EDIF netlist generation

12

Ptolemy Miniconference 23Wirthlin, Koecher BYU

JHDL Circuit

Ptolemy Miniconference 24Wirthlin, Koecher BYU

Limitations

• Currently limited to feed-forward behavior
– No loops
– No recursion
– Limited method inlining

• Hardware types limited
– Scalar primitive types

• 32-bit integers (no bit-width analysis)
• 1-bit Boolean

– Custom Port/Token object used
• No resource sharing

13

Ptolemy Miniconference 25Wirthlin, Koecher BYU

Conclusions and Future Work

• JHDL hardware generation provides ability
to synthesize hardware for arbitrary
actors
– Convenient design specification
– Reduces reliance on limited actor libraries

• Development ongoing
• Future Work

– Bit-width analysis & support
– Support additional standard Ptolemy types
– Loop unrolling
– Resources sharing and scheduling

