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Cyber-Physical	Systems	
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The	major	challenge:	Integrating	complex	subsystems	with	
adequate	reliability,	repeatability,	and	testability.	



  

A	Simple	Challenge	Problem	
An	actor	or	service	that	
can	receive	either	of	
two	messages:	
1.  “open”	
2.  “disarm”	
Assume	state	is	closed	
and	armed.	
What	should	it	do	when	
it	receives	a	message	
“open”?	
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4 Image	from	The	Telegraph,	Sept.	9,	2015	



  

			Possible	Architectures	
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The	question:	What	to	do	
upon	receiving	“open”?	

•  Pub/Sub	(e.g.	ROS,	MQTT,	Azure,	Google	Cloud)	
•  Message	passing	(e.g.	Akka,	Erlang)	
•  Service-oriented	architecture	(e.g.	gRPC,	Thrift,	…)	
•  Shared	memory	(e.g.	Linda)	

Realized	with	an	NI	



  

Some	Solutions	(?)	
1.  Just	open	the	door.	

How	much	to	test?		How	much	formal	verification?	How	to	
constrain	the	design	of	other	components?	The	network?	

2.  Send	a	message	“ok_to_open?”	Wait	for	responses.	
How	many	responses?	How	long	to	wait?	What	if	a	
component	has	failed	and	never	responds?	

3.  Wait	a	while	and	then	open.	
How	long	to	wait?	

6 
Better	go	read	all	of	
Lamport’s	papers.	



  

Fix	with	formal	verification?	
One	possibility	is	to	formally	analyze	the	system.	
Properties	to	verify:	

1.  If	Door	receives	“open,”	it	will	eventually	open	the	door,	
even	if	all	other	components	fail.	

2.  If	any	component	sends	“disarm”	before	any	other	
component	sends	“open,”	then	the	door	will	be	disarmed	
before	it	is	opened.	

Can	these	be	satisfied?	
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Makes	a	distributed-
consensus	solution	

challenging.	

Requires	comparing	times	of	events	on	distributed	
platforms	in	a	model	of	computation	that	lacks	time.	



  

Can	these	properties	be	satisfied?	

Properties	to	verify:	
1.  If	Door	receives	“open,”	it	will	eventually	open	the	door,	

even	if	all	other	components	fail.	
2.  If	any	component	sends	“disarm”	before	any	other	

component	sends	“open,”	then	the	door	will	be	disarmed	
before	it	is	opened.	

Conjecture:	These	two	cannot	be	satisfied	(for	a	sufficiently	
complex	program)	without	additional	assumptions	(e.g.	
bounds	on	network	latency	and/or	clock	synchronization).	
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Popular	Techniques	
•  Publish	and	Subscribe	
–  ROS,	MQTT,	DDS,	Azure,	Google	Cloud	

•  Actors	
–  Akka,	Erlang,	Orleans,Rebeca,	Scala	…	

•  Service-oriented	architecture	
–  gRPC,	Bond,	Thrift,	…	

•  Shared	memory	
–  Linda,	pSpaces,	…	
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Hewitt/Agha	Actors	
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Data	+	Message	Handlers	

Private	Data	

Message	
Queue	Messages	In	 Messages	Out	

Handler	B	

Handler	A	

X	

X.A(args)	

X.B(args)	

X.A(args)	

Y.C(args)	

Y.D(args)	

[Hewitt,	1977]	 [Agha,	1986,	1990,	1997]	



  

Example	with	Two	Actors	
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What	assumptions	are	needed	
for	it	to	be	safe	for	the	handler	
to	open	the	door?	

Actor Source { 
 handler main(){ 
  x = new Door(); 
  x.disarm_door(); 
  x.open_door(); 
 } 

} 

Actor Door { 
 handler open_door(){ 
  … 
 } 
 handler disarm_door(){ 
  … 
 } 

} 



  

Example	with	Three	Actors	
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Now	what	assumptions	are	
needed	for	it	to	be	safe	for	the	
handler	to	open	the	door?	

Actor Source { 
 handler main(){ 
  x = new Door(); 
  p = new PassDisarm(); 
  p.pass(); 
  x.open_door(); 
 } 

} 

Actor PassDisarm { 
 handler pass(Door x){ 
  x.disarm_door(); 
 } 

} 

Actor Door { 
 handler open_door(){ 
  … 
 } 
 handler disarm_door(){ 
  … 
 } 

} 



  

Possible	Solutions	
1.  Ignore	the	problem	
2.  Model	timing		
3.  Change	the	model	of	computation:	
– Dataflow	(DF)	
–  Kahn	Process	Networks	(KPN)	
–  Synchronous/Reactive	(SR)	
– Discrete	Events	(DE)	
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[Lohstroh	and	Lee,	“Deterministic	Actors,”	Forum	on	Design	Languages	(FDL),	2019]	



  

			DE	Solution	
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Correct	
behavior	is	now	
defined:	
Process	events	
in	timestamp	
order.	



  

Discrete	Events	(DE)	
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•  Events	that	are	processed	in	timestamp	order.	
•  Widely	used	in	simulation	
•  Foundation	of	hardware	description	languages.	
•  A	deterministic	concurrent	MoC.	
•  But	how	to	realize	on	distributed	machines?	

A	few	texts	that	use	the	DE	MoC	



  

Example:	Google	Spanner	
A	Globally	Distributed	Database	
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Distributed	database	with	redundant	storage	
and	query	handling	across	data	centers.	

Update	to	a	record	
comes	in.	Time	stamp	t.	

Query	for	the	same	record	
comes	in.	Time	stamp	r.	



  

Example:	Google	Spanner	
A	Globally	Distributed	Database	

Semantics	of	the	
database	is	that	it	
handles	queries	in	
timestamp	order.	

18 

query

update

Web
Server

Network
Interface

Database

reply

query
reply

update
Platform B

update
query

Web
Server

Database

Pl
at

fo
rm

 A

[Corbet,	et	al.,	“Spanner:	Google's	Globally-Distributed	Database,”	OSDI	2011]	
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One	Possible	Approach:	
Chandy	and	Misra	[1979]	
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•  Assume	events	
arrive	reliably	in	
timestamp	order.	

•  Wait	for	events	on	
each	input.	

•  Process	the	event	
with	the	smaller	
timestamp.	

•  E.g.	r1	<	t1	
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One	Possible	Approach:	
Chandy	and	Misra	[1979]	
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•  Deterministic	
•  Network	traffic	for	

“null	messages.”	
•  Every	node	is	a	single	

point	of	failure.	
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Another	Possible	Approach:	
Jefferson:	Time	Warp	[1985]	

•  Speculatively	
execute.	

•  If	a	message	with	an	
earlier	timestamp	
later	arrives…	
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Another	Possible	Approach:	
Jefferson:	Time	Warp	[1985]	

•  Speculatively	
execute.	

•  If	a	message	with	an	
earlier	timestamp	
later	arrives…	

•  Backtrack!	
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Another	Possible	Approach:	
Jefferson:	Time	Warp	[1985]	

•  No	single	point	of	failure.	
•  Can	process	events	

without	network	traffic		
•  Can’t	backtrack	side	

effects.	
•  Overhead:	Snapshots	
•  Uncontrollable	latencies.	
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A	Third	Possible	Approach:	
High	Level	Architecture	(HLA)	
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•  Next	event	request	
(NER)	with	r	

•  Next	event	request	
(NER)	with	t	

•  If	r	<	t	,	then	time	
advance	grant	(TAG)	
of	q	≤	r	

•  If	q	=	r,	process	
event	
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Run	Time	Infrastructure	(RTI)	

NER(r)	NER(t)	 TAG(q)	



  

A	Third	Possible	Approach:	
High	Level	Architecture	(HLA)	
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•  Deterministic.	
•  RTI	is	a	single	point	

of	failure.	
•  Works	well	for	

simulation,	but	not	
for	online	
processing.	
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Ptides/Spanner	Approach	

•  Local	clock	on	each	platform.	
•  t	and	r	from	local	clocks.	
•  Bounded	execution	time	W.	
•  Bounded	network	latency	L.	
•  Event	is	known	at	B	by	time		
t	+W+L	(by	clock	at	A).	

•  Bounded	clock	
synchronization	error	E.	

•  Event	is	known	at	B	by	time		
t	+W+L+E	(by	clock	at	B).	
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Ptides/Spanner	Approach	

•  No	single	point	of	failure.	
•  Can	process	events	with	

no	network	traffic.	
•  Latencies	are	well	

defined.	
•  Time	thresholds	

computed	statically.	
•  Assumptions	are	clearly	

stated.	
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[Zhao,	Liu,	and	Lee,	“A	Programming	Model	for	Time-Synchronized	Distributed	Real-Time	Systems,”	RTAS,	2007]	
[Corbet,	et	al.,	“Spanner:	Google's	Globally-Distributed	Database,”	OSDI	2011]	
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Ptides	

This	model	was	introduced	in	2007	with	applications	to	
cyber-physical	systems:	
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http://ptolemy.org/projects/chess/ptides		



  

At	What	Cost	Determinism?	
•  Synchronized	clocks	
–  These	are	becoming	ubiquitous	

•  Bounded	network	latency	
–  Violations	are	faults.	They	are	detectable.	

•  Bounded	execution	times	
–  Only	needed	in	particular	places.	
–  Solvable	with	PRET	machines		
(another	talk).	
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What	can	be	verified	with	the		
PTIDES/Spanner	approach?	
1.  If	Door	receives	“open,”	it	will	eventually	open	the	door	

in	bounded	time,	even	if	all	other	components	fail.	
2.  If	any	component	sends	“disarm”	before	any	other	

component	sends	“open,”	and	the	message	is	received	in	
bounded	time,	then	the	door	will	be	disarmed	before	it	is	
opened.	

The	first	is	stronger,	the	second	weaker.		
And	these	properties	are	satisfied	for	any	program	complexity.	

30 
[Zhao	et	al.,	“A	Programming	Model	for	Time-Synchronized		
Distributed	Real-Time	Systems,”	RTAS	2007]	



  

Principle	
Use	a	MoC	where:	
1.  Designing	software	that	satisfies	the	properties	of	interest	is	

easy.	
2.  The	implementation	of	the	MoC	(the	framework)	is	verifiably	

correct	under	reasonable,	clearly	stated	assumptions.	
The	hard	part	is	2,	where	it	should	be,	since	that	is	done	once	for	
many	applications.	
"Keep	the	hard	stuff	out	of	the	application	logic”	
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Today:	Lingua	Franca	
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A	polyglot	meta-
language	for	
deterministic,	
concurrent,	
time-sensitive	
systems.	

https://github.com/icyphy/lingua-franca/wiki	



  

Hello	World	in	Lingua	Franca	
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Target	language	(currently	C,	C++,	and	
TypeScript.	Plans	for	Python,	Rust,	Java)	

Arbitrary	code	in	the	
target	language.	

target C; !
main reactor HelloWorld { !

reaction(startup) {= !
        printf("Hello World.\n"); !
    =} !
}	

Events	of	various	kinds	
trigger	reactions	



  

Hierarchical	Composition	and	Ports	
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reactor A { !
  output y; !
  ... !
} !
reactor B { !
  input x; !
  ... !
} !
main reactor C { !
  a = new A(); !
  b = new B(); !
  a.y -> b.x; !
}	



  

Application	Sketch	
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Reactors	
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reactor ComputationA { !
    input x:type; !
    output y:type; !
    state s:type(initialValue); !
    reaction(x) -> y {= !
        Target-language code !
        referencing x, y, and s. !
    =} !
}	

Timestamped	inputs	

Logically	instantaneous	outputs	

Local	state	

Reaction	signature	gives	
trigger(s)	and	production	



  

Determinism	
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reactor Add { !
    input in1:int; !
    input in2:int; !
    output out:int; !
    reaction(in1, in2) -> out {= !
        int result = 0; !
        if (in1_is_present) { !
            result += in1; !
        } !
        if (in2_is_present) { !
            result += in2; !
        } !
        set(out, result); !
    =} !
}	

Whether	the	two	triggers	are	
present	simultaneously	depends	
only	on	their	timestamps,	not	on	
on	when	they	are	received	nor	
on	where	in	the	network	they	
are	sent	from.	



  

Periodic	Behavior	
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reactor SensorA { !
    output y:int; !
    timer t(1 msec, 100 usec); !
    reaction(t) -> y {= !
        Poll the sensor in !
        the target language !
        and write value to y. !
    =} !
}	

Time	as	a	first-class	
data	type.	

In	our	C	target,	timestamps	are	64-bit	integers	
representing	the	number	of	nanoseconds	since	Jan.	1,	
1970	(if	the	platform	has	a	clock)	or	the	number	of	
nanoseconds	since	starting	(if	not).	



  

Event-Triggered	Behavior	
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reactor SensorB { !
    output y:int; !
    physical action a:int; !
    timer start; !
    reaction(start) -> a {= !
        Set up an interrupt service !
        routine that will call: !
        schedule(a, 0, value); !
    =} !
    reaction(a) -> y {= !
        set(y, a_value); !
    =} !
}	

Timestamp	will	be	
derived	from	the	
local	physical	clock.	

ISR	executes	
asynchronously,	and	
schedule()	function	is	
thread	safe.	



  

Deadlines	
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reactor ActuatorA { !
    input in:int; !
    reaction(in) {= !
        perform actuation. !
    =} deadline 10 msec {= !
        handle deadline violation. !
    =} !
}	

Deadline	is	violated	if	the	input	d.x	triggers	more	than	10	
msec	(in	physical	time)	after	the	timestamp	of	the	input.	



  

Status	
Still	early,	but	evolving	rapidly.	
•  Eclipse/Xtext-based	IDE	
•  C,	C++,	and	TypeScript	targets	
•  Code	runs	on	Mac,	Linux,	Windows,	and	bare	iron	
•  Command-line	compiler	
•  Regression	test	suite	
•  Wiki	documentation	

41 

https://github.com/icyphy/lingua-franca	



  

Performance	
Behaviors	of	the	C	target	in	the	regression	tests	
running	on	a	2.6	GHz	Intel	Core	i7	running	MacOS:	
•  Up	to	23	million	reactions	per	second	(43	ns	per).	
•  Linear	speedup	on	four	cores.	
•  Code	size	is	tens	of	kilobytes.	
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Clock	Synchronization	
•  NTP	is	widely	available	but	not	precise	enough.	
•  IEEE	1588	PTP	is	widely	supported	in	networking	
hardware	but	not	yet	by	the	OSs.	

•  Lingua	Franca	can	work	without	clock	synchronization	
by	reassigning	timestamps	to	network	messages.	
–  In	this	case,	determinism	is	preserved	within	each	multicore	
platform,	but	not	across	platforms.	
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Work	in	Progress	
•  Distributed	execution	based	on	Ptides.	
•  EDF	scheduling	on	multicore.	
•  Targeting	PRET	machines	for	hard	real	time.	
•  Formal	verification	of	Lingua	Franca	apps		
•  Leverage	Google’s	Protobufs	and	gRPC.	
–  Complex	datatypes	
–  Polyglot	systems	
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PRET	targets	

PRET	machines:	microarchitectures	with	precise	
timing	control.	
	
With	PRET	machines,	we	can	deploy	systems	
where	deadlines	are	provably	never	violated	
(with	explicitly	stated	assumptions).	
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http://ptolemy.org/projects/chess/pret	



  

Questions	That	can	be	Addressed	by		
Lingua-Franca	
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What	combinations	of	
periodic,	sporadic,	
behaviors	are	feasible?	

How	do	execution	
times	affect	feasibility?	
How	can	we	know	
execution	times?	

How	do	we	get	repeatable	
and	testable	behavior	even	
when	communication	is	
across	networks?	

How	do	we	specify,	
ensure,	and	enforce	
deadlines?	



  

Conclusions	
•  Lingua	Franca	programs	are	testable		

(timestamped	inputs	->	timestamped	outputs)	
•  LF	programs	are	deterministic	under		

clearly	stated	assumptions.	
•  Violations	of	assumptions	are	detectable		

at	run	time.	
•  Actors,	Pub/Sub,	SoA,	and	shared	memory		

have	none	of	these	properties.	

47 
https://github.com/icyphy/lingua-franca/wiki	


