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Introducing	
Edward	A.	Lee	

http://ptolemy.org/~eal	
eal@berkeley.edu	



  

Location	



  

The	University	of	
California	at	
Berkeley	
	



  

Disclaimer	

	
This	is	not	a	survey	of	the	field.	
	
I	will	give	you	a	narrow	Berkeley	view	with	a	lot	
of	opinions	and	personal	perspectives.	
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Key	References	

https://ptolemy.berkeley.edu/projects/chess/pret/	
	
&	
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These	slides:	
http://ptolemy.org/~eal/presentations/Lee_PrecisionTimedMicroprocessors_Saclay.pdf		



  

These	slides	
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Cyber-Physical Systems 

Orchestrating networked computational  
resources and physical systems. 

Image: Wikimedia Commons 
Roots:	
•  Term	coined	around	2006	by	

Helen	Gill	at	the	National	Science	
Foundation	in	the	US.	

•  Cyberspace:	attributed	William	
Gibson,	who	used	the	term	in	the	
novel	Neuromancer.	

•  Cybernetics:	coined	by	Norbert	
Wiener	in	1948,	to	mean	the	
conjunction	of	control	and	
communication.	



  

Not	just	information	technology:		
•  Cyber	+	Physical	
•  Computation	+	Dynamics	
•  Security	+	Safety	
	
Properties:	
•  Highly	dynamic	
•  Safety	critical	
•  Uncertain	environment	
•  Physically	distributed	
•  Sporadic	connectivity	
•  Resource	constrained	

We	need	engineering	models	
and	methodologies	for	dependable	
cyber-physical	systems.	

Automotive 

Cyber-Physical	Systems	
Biomedical 

Military 

Energy 

Manufacturing 

Avionics 

Buildings 
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Cyber	Physical	Systems	
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Predictability	requires	determinacy	and	depends	on	timing,	
including	execution	times	and	network	delays.	



  

Example	

Hundreds of 
microcontrollers 
orchestrating depositing 
ink and slicing paper 
flying through the 
machine at 100 km/hr. 

Lee,	Berkeley	 12 

This	Bosch	Rexroth	printing	press	is	a	cyber-
physical	factory	using	Ethernet	and	TCP/IP	with	
high-precision	clock	synchronization	(IEEE	1588)	on	
an	isolated	LAN.	



  Source: http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html 

Example – Flying Paster 



  Source:	http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html	

Example – Flying Paster 



  

										

CPS-related	terms	
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Internet	of	
Things	
(IoT)	

Industry	4.0	 The	
Industrial	
Internet	

Internet	of	
Everything	

Smarter	
Planet	

Machine	to	
Machine	
(M2M)	

Cyber-Physical	Systems	

TSensors	
(Trillion	
Sensors)	

The	Fog	

Lee,	Berkeley	
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What	is	Real	Time?	

•  fast	computation	
•  prioritized	scheduling	
•  computation	on	streaming	data	
•  bounded	execution	time	
•  temporal	semantics	in	programs	
•  temporal	semantics	in	networks	

17 Lee,	Berkeley	



  

What	is	Real	Time?	

•  fast	computation	
•  prioritized	scheduling	
•  computation	on	streaming	data	
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•  temporal	semantics	in	programs	
•  temporal	semantics	in	networks	

18 Lee,	Berkeley	

These	are	very	different	from	one	another.	
We	have	to	decide	which	to	focus	on.	



  

Achieving	Real	Time	

•  overengineering	
•  using	old	technology	
•  response-time	analysis	
•  real-time	operating	systems	(RTOSs)	
•  specialized	networks	
•  extensive	testing	and	validation	

19 Lee,	Berkeley	
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Schematic of a simple CPS: 



  

Computation given in an  
untimed, imperative language. 
Physical plant modeled with  
ODEs or DAEs 

Image: Wikimedia Commons 



  

This code is attempting 
to control timing. But 
will it really? 



  

Timing behavior emerges from 
the combination of the program 
and the hardware platform. 

USB interface

JTAG and SWD interface

graphics
display

CAN bus interface

Ethernet interface

analog
(ADC)
inputs

micro-
controller

removable 
flash 

memory
slot

PWM outputs

GPIO connectors

switches
connected

to GPIO pins
speaker
connected to
GPIO or PWM

Stellaris LM3S8962 evaluation board (Luminary Micro 2008, now Texas Instruments) 

Emergent	Timing	



  

Frozen	Designs	

Everything	about	the	design,	
down	to	wire	lengths	and	
microprocessor	chips,	must	be	
frozen	at	the	time	of	design.	

CCA	2.0	
Boeing	Dreamscape	



  

Correct execution of a program in all widely used 
programming languages, and correct delivery of a network 
message in all general-purpose networks has nothing to do 
with how long it takes to do anything. 
 

	
Programmers	have	to	step	outside	the	
programming	abstractions	to	specify	timing	
behavior.	
	

Lee,	Berkeley	 26 

Timing is not part of  
software and network semantics	



  

Contrast with correctness 
criteria in software 

We can safely 
assert that line 8 
does not execute, 
regardless of the 
choice of 
microprocessor! 

We can develop absolute 
confidence in the software, in that 
only a hardware failure is an excuse. 
 
But not with regards to timing!! 



  

Achieving	Real	Time	

•  overengineering	
•  using	old	technology	
•  model	the	processors	for	response-time	analysis	
•  real-time	operating	systems	(RTOSs)	
•  specialized	networks	
•  extensive	testing	and	validation	

28 Lee,	Berkeley	



  

Timing	of	programs	emerges	from	
the	implementation	

•  Pipeline	hazards	
•  Cache	effects	
•  Variable	DRAM	latencies	
•  Speculative	execution	
•  Interrupts	
•  Forwarding	
•  Dynamic	voltage/frequency	
•  …	

29 Lee,	Berkeley	
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WCET	

30 

The	determination	of	upper	bounds	on	
execution	times,	commonly	called	worst-case	
execution	times	(WCETs),	is	a	necessary	step	in	
the	development	and	validation	process	for	
hard	real-time	systems.	This	problem	is	hard	if	
the	underlying	processor	architecture	has	
components	such	as	caches,	pipelines,	branch	
prediction,	and	other	speculative	components.	

ACM	Tr.	on	Embedded	
Computing	Systems,	April	2008	



  

Modeling	the	Processor	

Timing	analysis	requires	detailed	info	about:	
•  The	pipeline	
•  Cache	management	hardware	
•  Branch	prediction	hardware	
•  Bus	arbitration	hardware	
•  Memory	management	hardware	
•  DRAM	architecture	
When	successful,	the	model	is	valid	only	for	a	
particular	piece	of	silicon,	not	a	family	of	chips.	

31 



  

Is	the	Analysis	Valid?	

32 Lee,	Berkeley	

Program	with	Interrupts	Almost	all	analysis	
techniques	become		
invalid	unless	interrupts	
are	disabled.		
This	means:	
•  No	operating	system	
•  No	packet	network	
•  I/O	is	by	polling	only	

IEEE	Computer,	May,	2006.	



  

The	Cost	of	Polling	

Consider	a	situation	where	a	rare	event	(e.g.,	fire	
detection)	requires	a	quick	response	(e.g.,	within	
500	μs).	Without	interrupts,	this	implies:	
•  No	task	can	take	more	than	500	μs	

– Every	task	becomes	time	critical.	

•  The	sensor	has	to	be	polled	every	500	μs.	
– Network	and	bus	traffic	and	processor	cycles	wasted	

33 



  

Summary	of	the	State	of	the	Art	

•  Avoid	modern	technology	(operating	systems,	
programming	languages,	networks,	multicore).	

•  Model	the	silicon	you	use	in	excruciating	detail,	
beyond	what	is	documented.	

•  Break	your	tasks	into	tiny	chunks	and	prove	they	do	
not	run	longer	than	500	μs.	

•  Schedule	everything	statically	and	periodically,	even	
for	rare	events	and	non-critical	tasks.	

•  Don’t	change	anything	after	validating	the	design.	

34 
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An	Epiphany	

36 



  

•  In	science,	the	value	of	a	model	lies	in	how	well	its	
behavior	matches	that	of	the	physical	system.	

•  In	engineering,	the	value	of	the	physical	system	lies	
in	how	well	its	behavior	matches	that	of	the	model.	

A	scientist	asks,	“Can	I	make	a	model	for	this	thing?”		
An	engineer	asks,	“Can	I	make	a	thing	for	this	model?”	

Lee,	Berkeley	 37 

The	Value	of	Models	



  

Consider	Chip	Design	

38 

A	piece	of	silicon	that	
doesn’t	behave	like	the	
model	is	just	beach	
sand.	
	

Intel	Haswell,	each	with	1.4	billion	transistors	



  

Models	vs.	Reality	

In	this	example,	
the	modeling	
framework	is	
calculus	and	
Newton’s	laws.	
	
Fidelity	is	how	
well	the	model	
and	its	target	
match	

39 Lee,	Berkeley	

The	model	

The	target	
(the	thing	
being	
modeled).	



  

A	Model	

40 Lee,	Berkeley	
Image	by	Dominique	Toussaint,	GNU	Free	Documentation	License,	Version	1.2	or	later.	
	



  

A	Physical	Realization	

41 Lee,	Berkeley	



  

Model	Fidelity	

•  To	a	scientist,	the	model	is	flawed.	
•  To	an	engineer,	the	realization	is	flawed.	

I’m	an	engineer…	
Perhaps	we	should	be	making	our	realizations	
more	faithful	to	our	models	rather	than	the	
other	way	around?	

42 Lee,	Berkeley	



  

Useful	Models	and	Useful	Things	

“Essentially,	all	models	are	wrong,		
but	some	are	useful.”	

	
Box,	G.	E.	P.	and	N.	R.	Draper,	1987:	Empirical	Model-Building	and	Response	
Surfaces.	Wiley	Series	in	Probability	and	Statistics,	Wiley.		

	
“Essentially,	all	system	implementations		

are	wrong,	but	some	are	useful.”	
	
Lee	and	Sirjani,	“What	good	are	models,”	FACS	2018.	

Lee,	Berkeley	 43 



  

The	Value	of	Simulation	

	
“Simulation	is	doomed	to	succeed.”	

[anonymous]	
	

Could	this	statement	be	confusing	engineering	
models	for	scientific	ones?	

44 Lee,	Berkeley	

Lee	and	Sirjani,	“What	good	are	models,”	FACS	2018.	



  

Changing	the	Question	

Is	the	question	whether	our	models	describe	the	
behavior	of	real-time	systems	(with	high	
fidelity)?	
	
Or	
	
Is	the	question	whether	we	can	build	real-time	
systems	where	behavior	matches	that	of	our	
models	(with	high	probability)?	

45 Lee,	Berkeley	
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Instruction	Set	Architecture	(ISA)	

The	concept	of	an	ISA	
hasn’t	changed	much	
since	the	1960s.	

47 
Fred	Brooks	

Photo	courtesy	of	computerhistory.org	



  

Instruction	Set	Architecture	(ISA)	

Physical	System	 Model 

An ISA is a deterministic model of the  
behavior of hardware 

Lee,	Berkeley	 48 

Image:	Wikimedia	Commons	
Waterman,	et	al.,	The	RISC-V	Instruction	Set	Manual,	
UCB/EECS-2011-62,	2011	



  

The hardware out of which we build 
computers is capable of delivering “correct” 
computations and precise timing… 

 
Synchronous digital logic delivers 
precise, repeatable timing. 
 
 
 
… but the overlaying software 
abstractions discard timing. 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 

Lee,	Berkeley	 49 



  

PRET Machines – Giving Software the 
Capabilities its Hardware Already Has. 

•  PREcision-Timed processors = PRET 
•  Predictable, REpeatable Timing = PRET 
•  Performance with REpeatable Timing = PRET 

= PRET + 
Computing 

With time 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 

http://chess.eecs.berkeley.edu/pret	

Lee,	Berkeley	 50 



  

Major	Challenges	
and	existence	proofs	that	they	can	be	met	

•  Pipelines	
–  fine-grain	multithreading	

•  Memory	hierarchy	
– memory	controllers	with	controllable	latency	

•  I/O	
–  threaded	interrupts	with	zero	effect	on	timing	

Lee,	Berkeley	 51 



  

Pipeline	
Hazards	

•  Read	after	write,	e.g.	
i1. R2 <-	R5+R3
i2. R4	<- R2+R3	

•  Write	after	read	
•  Write	after	write	
•  Branch	based	on	result	

52 
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Three	Generations	of	PRET	
Machines	at	Berkeley	

•  PRET1,	Sparc-based	(simulation	only)	
–  [Lickly	et	al.,	CASES,	2008]	

•  PTARM,	ARM-based	(FPGA	implementation)	
–  [Liu	et	al.,	ICCD,	2012]	

•  FlexPRET,	RISC-V-based	(FPGA	+	simulation)	
–  [Zimmer	et	al.,	RTAS,	2014,	PhD	Thesis	2015]	

Lee,	Berkeley	 53 



  

Multiple	Register		
Banks	

All	our	PRET	machines	have	
multiple	register	banks,	each	
providing	a	“hardware	thread.”	
	
Cost	in	hardware	is	modest.		

54 

PC

Instruction
memory Mux

Add
4

fetch
decode

execute
m

em
ory

w
riteback

Register
bank

Mux

ALU

Decode

Zero?

branch
taken

control hazard (conditional branch)
data hazard (com

puted branch)

data
memory

Mux

data hazard (m
em

ory read or ALU
 result)

Image	from	Lee	&	Seshia,	
Introduction	to	Embedded	Systems	

MIT	Press,	2017	

PC	PC	PC	PC	PC	

Register	
bank	

Register	
bank	

Register	
bank	

Register	
bank	

Register	
bank	



  

Multiple	Register		
Banks	

If	independent	tasks	are	
interleaved	through	the	
pipeline,	hazards	disappear.	
	
Can	eliminate	pipeline	bubbles.	

55 

PC

Instruction
memory Mux

Add
4

fetch
decode

execute
m

em
ory

w
riteback

Register
bank

Mux

ALU

Decode

Zero?

branch
taken

control hazard (conditional branch)
data hazard (com

puted branch)

data
memory

Mux

data hazard (m
em

ory read or ALU
 result)

Image	from	Lee	&	Seshia,	
Introduction	to	Embedded	Systems	

MIT	Press,	2017	

PC	PC	PC	PC	PC	

Register	
bank	

Register	
bank	

Register	
bank	

Register	
bank	

Register	
bank	



  

Pipeline	Interleaving	is	Old	

First	used	in	the	CDC	6600.	

56 



  

2nd Generation PRET 
PTArm, a soft core on a 
Xilinx Virtex 5 FPGA (2012)	

•  Four	hardware	threads	
•  Deterministic	instruction	timing	
•  Shared	SRAM	memory	
•  Partitioned	DRAM	memory	
•  Precise	timing	instructions	

57 Lee,	Berkeley	 57 
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DRAM	Memories	

The	latency	of	a	DRAM	memory	access	depends	
on	the	address	of	the	previous	access.	
	
	
	
	
Assigning	banks	to	hardware	threads	can	make	
this	deterministic.	

58 
Reineke,	Liu,	Patel,	Kim,	&	Lee.	"PRET	DRAM	Controller:	Bank	Privatization	for	Predictability		
and	Temporal	Isolation,”	CODES+ISSS	'11.	



  

Hardware	
thread	Hardware	
thread	Hardware	
thread	

2nd Generation PRET 
Summary 

Hardware	
thread	

registers	

scratch	
pad	

memory	

I/O	devices	

Interleaved 
pipeline with one 
set of registers 

per thread 

SRAM 
scratchpad 

shared among 
threads 

DRAM main 
memory, 

separate banks 
per thread 

memory	
memory	

memory	

Isaac	Liu,	PhD	Thesis,	2012	
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Mixed	Criticality	Systems	

61 

Platform	1	 Platform	2	 Platform	3	

τ1	 τ2	 τ3	

Federated	
architecture	

Platform	

τ1	 τ2	 τ3	

Integrated	
architecture	

Different	importance,	
safety,	or	certification	

requirements	

Development	
and	certification	

costs?	
Requirements	
still	met?	

[Automotive Rhythms] 

[Tommy Wiklind] 
§  Increasingly	complex	

functionality		
u  Cost	and	size,	weight	and	

power	(SWaP)	concerns	
u  E.g.	High-end	cars	with	

70-100+	ECUs	



  

HRT	and	SRT	

62 

•  Set	of	independent,	periodic	tasks	τi	,	each	assigned	a	
criticality	level	

•  Each	criticality	level	has	a	requirement	regarding	deadline	
importance	

time	≤	Ci	
Di	

deadline	

Ti	

release	

τi	

hard	real-time	(HRT)	tasks:	
should	never	miss	deadlines		 higher	criticality	levels	

soft	real-time	(SRT)	tasks:	
less	utility	if	deadline	missed		

lower	criticality	levels	



  

Tradeoffs	

63 

Isolation		
(spatial	and	temporal)	
independent	behavior	

Timing	predictability	
Safe	and	tight	bounds	on	worst-
case	execution	time	(WCET)	

Efficient	processor	
utilization	

+	Modularity	
+	Independent	verification	

+	Verification	
+	Less	over	provisioning		

+	Cost	

Hard	real-time	tasks	

Soft	real-time	tasks	

FlexPRET	makes	these	
tradeoffs	at	the	task	level	
and	not	processor	level.	



  

3rd		Generation	PRET:	
Open-Source	FlexPRET									(Zimmer	2014/15)	

•  32-bit,	5-stage	thread	interleaved	pipeline,	RISC-V	ISA	
–  Hard	real-time	HW	threads:	
scheduled	at	constant	rate	for	isolation	and	repeatability.	

–  Soft	real-time	HW	threads:		
share	all	available	cycles	for	efficiency.	

•  Deployed	on	Xilinx	FPGA	

64	
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NI	myRIO	(Zync)	



  

Hard	and	Soft	
Real-Time	Threads	

	
HRTTs	(when	active)	are	
issued	periodically	according	
to	a	fixed	schedule.	
	
SRTTs	use	all	remaining	
cycles.	

65 
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SRT thread 

Hardware	
thread	Hardware	
thread	Hardware	
thread	Hardware	
thread	

FlexPRET 
Hard-Real-Time (HRT) Threads 
Interleaved with Soft-Real-Time (SRT) Threads 

Hardware	
thread	

registers	

scratch	
pad	

HRT threads have 
deterministic timing. 
SRT threads share 
remaining cycles 

SRAM 
scratchpad 

shared among 
threads 

DRAM main 
memory provides 

deterministic latency 
for HRT threads. 

Conventional 
behavior for the rest. 

memory	
memory	

memory	

HRT thread 

Michael	Zimmer	



  

FlexPRET	Summary	

•  RISC	V	ISA	
•  5-stage,	fine-grained	multithreaded	processor	
designed	for	mixed-criticality	systems.	

•  Implemented	with	Chisel.	Compiles	to	FPGA	
and	a	C++	cycle-accurate	simulator.	

•  Class:	100-200MHz	32-bit	embedded	
processor.	

•  Open	source:	
https://github.com/pretis/flexpret		
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Avionics	Mixed	Criticality		
Test	Case	

68 
S.	Vestal,	“Preemptive	Scheduling	of	Multi-criticality	Systems	with	
Varying	Degrees	of	Execution	Time	Assurance,”	in	RTSS	2007.	
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Fig. 1: FlexPRET-8T executing a mixed-criticality avionics
case study.

•  Abstract	workload	of	
21	tasks	derived	
from	a	time-
partitioned	avionics	
system1	with	93%	
utilization	

•  Each	iteration	
performs	identical	
computation,	but…	

Deployed	on	8	HW	
threads	

‘A’	level	(most	critical)	
tasks	on	separate	

threads	

‘B’	level	(critical)	tasks	
on	a	thread	using	non-

preemptive	static	
scheduler	

‘B’	level	(critical)	tasks	
on	a	thread	using	rate-
monotonic	scheduler	

‘C’	and	‘D’	level	(less	
critical)	tasks	on	
threads	that	use	

earliest	deadline	first	
(EDF)	

Isolated	execution	time	

Execution	time	
dependent	on	HRTTs	

Zimmer,	PhD	Thesis,	2015.	
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About	Interrupts	

“[M]any	a	systems	programmer’s	
grey	hair	bears	witness	to	the	
fact	that	we	should	not	talk	
lightly	about	the	logical	problems	
created	by	that	feature”	
	
	 	 	-	Edsger	Dijkstra	(1972)	

70 Lee,	Berkeley	



  

Interrupts	

•  Nondeterministically	interleaved	with	program	
•  Make	response	time	>	execution	time	
•  Disrupt	cache	and	branch	predictors	
•  Overhead	of	context	switching	

•  For	WCET	analysis,	have	to	disable	interrupts	
•  Disabling	interrupts	increases	variability	in	
response	time	and	forces	all	tasks	to	be	small.	

71 Lee,	Berkeley	



  

Interrupts	

Scientific	solution:	
•  Model	all	these	effects	

Engineering	solution:	
•  Eliminate	all	these	effects	

The	latter	is	what	PRET	machines	do.	

72 Lee,	Berkeley	



  

Interrupt Handler Thread 

Hardware	
thread	Hardware	
thread	Hardware	
thread	

FlexPRET I/O 
Interrupt Handler Thread Option 1 

Hardware	
thread	

registers	

scratch	
pad	

Such interrupts have  
no effect on HRT threads, and  

bounded effect on SRT threads! 

memory	
memory	

memory	

Michael	Zimmer	

A	similar	strategy	is	
also	used	by	XMOS,	
but	with	less	isolation.	



  

Interrupt Handled 
conventionally by a SRTT 

Hardware	
thread	Hardware	
thread	Hardware	
thread	

FlexPRET I/O 
Interrupt Handler Thread Option 2 

Hardware	
thread	

registers	

scratch	
pad	

Such interrupts have  
no effect on HRT threads, and  
bounded effect on SRT threads 
other than the handling thread. 

memory	
memory	

memory	

Michael	Zimmer	
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Fact	

The	real-time	performance	of	a	FlexPRET	
machine	is	never	worse	than	that	of	a	
conventional	machine.	
	
Proof:	A	FlexPRET	machine	is	a	conventional	
machine	if	the	memory-mapped	registers	
controlling	HRT	and	SRT	threads	is	set	to	have	
only	one	thread,	a	SRT	thread.	

76 Lee,	Berkeley	



  

The	Cost	

[Zimmer,	Broman,	Shaver,	Lee,	RTAS	2014]	
77 Lee,	Berkeley	

Size:	



  

The	Cost	

A	baseline	RISC-V	without	any	complex	
instructions	(floating	point,	integer	division,	
packed	instructions)	can	be	realized	on	an	FPGA	
with	580	flip	flops	and	2,788	LUTs.	
A	4-thread	FlexPRET	can	be	realized	with	908	
flip	flops	and	3,943	LUTs,	an	increase	of	56%	and	
41%	respectively.	
	
Percentage	is	much	lower	with	floating	point,	division,	etc.	
[Zimmer,	Broman,	Shaver,	Lee,	RTAS	2014]	

78 Lee,	Berkeley	



  

Abstract	PRET	Machines	(APM)	

RTSS,	2017,	Paris.	
This	paper	shows	that	achieving	deterministic	response	
times	that	meet	deadlines,	when	that	is	feasible,	
comes	at	no	cost	in	worst-case	response	times.	
	

This	is	shown	for	a	task	model	of	N	sporadic	
independent	tasks	with	deadlines.	
	

79 Lee,	Berkeley	



  

Intuition	

•  N	sporadic	real-time	tasks	with	minimum	
interarrival	time	Ti,	deadlines	Di,	and	WCET	Ci.	

Theorem:	When	Ti	=	Di,	PRET	yields	deterministic	
response	times	no	worse	than	the	worst	case	
response	time	of	a	conventional	architecture.	
	

When	Ti	>	Di,	if	any	processor	can	deliver	
deterministic	response	times,	PRET	will,	with	worst	
case	response	time	no	worse	than	a	conventional	
architecture.	

80 Lee,	Berkeley	



  

Bottom	Line	

At	modest	hardware	cost,	FlexPRET	offers	the	
possibly	of	isolated	hard-real-time	tasks	that	are	
unaffected	by	interrupts	and	other	real-time	
tasks.	
	
This	comes	at	no	cost	in	performance.	
	
Considering	the	elimination	of	pipeline	bubbles,	
for	some	workloads,	it	improves	performance.	

81 



  

Benefits	of	PRET	
(Even	if	you	don’t	care	about	determinism)	

•  Very	low	context	switch	overhead	
– Up	to	the	number	of	hardware	threads.	
– Conventional	overhead	above	that.	

•  Tighter	WCET	analysis	
– Particularly	when	activating	enough	threads	to	
eliminate	pipeline	bubbles	and	memory	access	
order	dependencies.	

•  No	longer	need	to	be	restricted	to	polling	I/O	
– Effect	of	interrupts	is	bounded.	

82 Lee,	Berkeley	



  

Benefits	of	PRET	
(If	you	take	advantage	of	determinism)	

•  Modularity	
–  Non-interference	between	tasks.	
–  Interrupts	have	exactly	no	effect	on	hard-real-time	tasks.	

•  Exactness	
–  Can	get	not	just	WCET,	but	actual	ET.	
–  Not	just	ET,	but	response	time.	

•  Repeatability	
–  Works	in	the	field	like	on	the	bench.	
–  Event	ordering	can	be	made	invariant.	

•  Complexity	
–  More	hard-real-time	tasks	is	better	than	fewer.	

•  Certifiability	
–  Every	correct	execution	of	the	software	gives	the	same	behavior.	

•  Energy	
–  Reduce	voltage	and	frequency	to	the	bare	minimum	to	meet	deadlines.	

83 Lee,	Berkeley	



  

FlexPRET	and	Energy	

•  With	enough	concurrency	in	the	application,	
every	cycle	performs	useful	work	(no	speculation,	
no	pipeline	bubbles,	no	memory	stalls)	

•  Flexibility	for	logical	operating	frequency	of	each	
thread	(load	balancing)	

•  Predictability	enables	tighter	bounds	on	worst-
case	execution	time	(WCET)	

•  Voltage	and	frequency	can	be	reduced	until	all	
deadlines	are	barely	met.	

84 



  

One	way	to	Make	PRET	Widespread	
Real-Time	Units	(RTUs)	

•  Offload	timing-critical	functions	
to	the	RTU	
– Compare	with	dedicated	
hardware	

•  Software	peripherals	
– Bit-banging	for	custom	protocols	

•  Software	API:	OpenRT?	
– Richer	interface	for	smart		
sensors/actuators	

Lee,	Berkeley	 85	

Adafruit.com	

1250	ns	

‘1’	
‘0’	

Variable	
duty-cycle	
protocol	

CPU	GPU	 RTU	

Display	

Custom	peripheral,	e.g.	



  

So	why	isn’t	every	modern	
processor	a	FlexPRET?	

Possibilities:	
	
•  Our	claims	look	too	good	to	be	true.	

•  Programming	models	that	can	take	advantage	
of	this	are	missing.	
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Basic	Timing	Control	in	PRET	

88 

Bui,	Lee,	Liu,	Patel,	and	Reineke,	“Temporal	isolation	
on	multiprocessing	architectures,”	DAC	2011.	

time r; 
get_time(r); 
while(1) { 

 add_ms(r, 10); 
 exception_on_expire(r); 
 task(); 
 deactivate_exception(); 
 delay_until(r); 

} 

	internal	clock	
value	(in	

nanoseconds)	

Compute	
future	time	

Execution	
interrupted	at	time	
r	(deadline	miss)	If	here,	no	deadline	

miss	so	deactivate	

Wait	until	next	
period,	SRTT	can	
use	allocated	

cycles	

Extended	RISC-V	ISA	with	timing	instructions.	
E.g.	Hard-real-time	periodic	task:	



  

Four Patterns of  
Timed Code Blocks 

[V1]	Best	effort:		
set_time r1, 1s 
// Code block 
delay_until r1 

[V2]	Late	miss	detection			
set_time r1, 1s 
// Code block 
branch_expired r1, <target> 
delay_until r1 
 

set_time r1, 1s 
exception_on_expire r1, 1 
// Code block 
deactivate_exception 1 
delay_until r1 
 

[V3]	Immediate	miss	detection			

[V4]	Exact	execution:		
set_time r1, 1s 
// Code block 
MTFD r1 

Lee,	Berkeley	 89 



  

Higher-Level	Programming	
Models	

	
	
The	above	patterns	are	rather	low	level.	Come	
next	week	for	higher-level	programming	models	
that	map	beautifully	to	PRET	(as	well	as	to	
conventional	architectures).	

90 



  

But	Wait…	

	
	
The	whole	point	of	an	ISA	is	that	the	same	
program	does	the	same	thing	on	multiple	
hardware	realizations.	
	
Isn’t	this	incompatible	with	deterministic	timing?	

Lee,	Berkeley	 91 



  

Outline	

•  Cyber-Physical	Systems	
•  Real	Time	
•  Timing	in	Software	
•  Science	and	Engineering	
•  Precision	Timed	Machines	
•  Mixed	Criticality	and	FlexPRET	
•  I/O	and	Interrupts	
•  Cost	and	Performance	
•  Programming	Models	
•  Parametric	PRET	Machines	

92 



  

Parametric PRET  
Machines 

ISA that admits a variety of implementations: 
•  Variable clock rates and energy profiles 
•  Variable number of cycles per instruction 
•  Latency of memory access varying by address 
•  Varying sizes of memory regions 
•  … 

A given program may meet deadlines on only some 
realizations of the same parametric PRET ISA. 

set_time r1, 1s 
// Code block 
MTFD r1 

Lee,	Berkeley	 93 



  

Realizing the MTFD instruction on a  
Parametric PRET machine 

The goal is to make software that will run correctly on many implementations 
of the ISA, and that correctness can be checked for each implementation. 

set_time r1, 1s 
// Code block 
MTFD r1 

Lee,	Berkeley	 94 



  

Research	Opportunities	

•  Exploiting	potential	reduction	in	energy	
•  Programming	models	with	temporal	semantics	
•  Synthesizing	HRT	thread	schedules	on	the	fly	
•  OS	support	for	dynamic	HRT	thread	instantiation	

95 Lee,	Berkeley	



  

Conclusion	

•  In	science,	the	value	of	a	model	lies	in	
how	well	its	behavior	matches	that	of	
the	physical	system.	

•  In	engineering,	the	value	of	the	physical	
system	lies	in	how	well	its	behavior	
matches	that	of	the	model.	

My	message:		
Do	less	science	and	more	engineering.	
	
http://ptolemy.berkeley.edu/pret	
http://ptolemy.berkeley.edu/ptides			

http://platoandthenerd.org		


