Precision Timed Microprocessors

Edward A. Lee

Professor of the Graduate School

Systémes embarqués et traitement de lI'information (SETI)

Université Paris-Saclay

Saclay, France, January 24, 2020

University of California at Berkeley

’J Introducing
Edward A. Lee

BS (Yale), SM (MIT), PhD (Berkeley)
» Bell Labs in the early 1980s
« Berkeley EECS faculty since 1986

» Working on embedded software since 1978

- Director of iCyPhy, Industrial Cyber-Physical Systems Research Center | Digital

CONMUNICATION

third edition

 Director of the Ptolemy project
» Former Chair of EECS, Berkeley

DIGITAL
DIGITAL COMMUNICATION

f‘ﬁl\llﬂl'le‘ATlf\kl

>
v
Sl

Software Synthesis from

gSP ; : ! Dataflow Graphs
rocessor d i ilesiire ik % o
* Co-founder of BDTI, Inc. /3, Fundamentals P A 2l e

of

The 4 ’ The Creative

INTRODUCTION TO Partnership

) A ' Coevolution | | :veeooed sySTEMS of Humansand 4
2 ’_: (d! A CYBER-PHYSICAL SYSTEMS Technology =]

A APPROACH
. =
X 2
Second Edition -

AND THE

3
7‘}2."\'}\?:. S anda viacnines g N E R D
Edward Ashford Lee g e L

7
EOWARD ASHFORD LEE

 Books...

http://ptolemy.org/~eal
eal@berkeley.edu

c
9
o
(q°)
(&)
@
—

The University of

California at
Berkeley

5? Disclaimer

This is not a survey of the field.

| will give you a narrow Berkeley view with a lot
of opinions and personal perspectives.

@ Key References

https://ptolemy.berkeley.edu/projects/chess/pret/

Edward Ashford Lee and
Sanjit Arunkumar Seshia

& The Creative
INTRODUCTION TO Partnership
EMBEDDED SYSTEMS of Humans and
A CYBER-PHYSICAL SYSTEMS Technology

APPROACH P | I
Second Edition (M odeken A ﬂ

AND THE

NERL

EOWARD ASHFORD LEE

These slides:
http://ptolemy.org/~eal/presentations/Lee PrecisionTimedMicroprocessors Saclay.pdf

i? These slides

Of ek

;,@,&

EI

http://ptolemy.org/~eal/presentations/Lee PrecisionTimedMicroprocessors Saclay.pdf

5? Outline

 Cyber-Physical Systems
e Real Time
* Timing in Software
* Science and Engineering
e Precision Timed Machines
* Mixed Criticality and FlexPRET
* |/O and Interrupts
e Cost and Performance
* Programming Models
 Parametric PRET Machines

g@ Cyber-Physical Systems

Orchestrating networked computational
resources and physical systems.

Image: Wikimedia Commons

Roots:

* Term coined around 2006 by
Helen Gill at the National Science
Foundation in the US.

* Cyberspace: attributed William
Gibson, who used the term in the
novel Neuromancer.

e Cybernetics: coined by Norbert
Wiener in 1948, to mean the
conjunction of control and
communication.

@ Cyber-Physical Systems

Not just information technology:

* Cyber + Physical
* Computation + Dynamics
e Security + Safety

Biomedical

Properties:

e Highly dynamic

e Safety critical

* Uncertain environment
* Physically distributed

e Sporadic connectivity

* Resource constrained

We need engineering models

and methodologies for dependable Manutacturing H ol
cyber-physical systems. | B Wl i
Lee, Berkeley “"‘“’”D[z.y BOIC

Computational Network Computational
Platform Fabric Platform

Physical

plant

Predictability requires determinacy and depends on timing,
including execution times and network delays.

’/ Example

This Bosch Rexroth printing press is a cyber-
Hundreds of physical factory using Ethernet and TCP/IP with

microcontrollers high-precision clock synchronization (IEEE 1588) on
orchestrating depositing | anisolated LAN.

ink and slicing paper 1

flying through the

machine at 100 km/hr.

Lee, Berkeley

[
[YE
\

N

Active

paper
feed

Sensor top dead center

G|

|
S |

Reserve I/(l"\

paper feed

\ S

5@ Example — Flying Paster

~ Drive roller

Dancer /~ \\\&

Idleroller & l\ A

b O
(®) [»] i =y

.‘.\ ! / A g
s / _ Idle roller
)

.

Source: http.//offsetoressman.blogspot.com/2011/03/how-flying-paster-works.htn

@ Example — Flying Paster

Source: http://offsetpressman.blogspot.com/2011/03/how-flying-paster-works.html

CPS-related terms

Smarter

. Internet of Planet Machm_e to
verything Machine
(M2M)
Internet of _
Things) The Fog
(loT) | TSensors
Industry 4.0 The (Trillion
Industrial Sensors)
Internet

Cyber-Physical Systems

Lee, Berkeley

5? Outline

* Cyber-Physical Systems
 Real Time
* Timing in Software
* Science and Engineering
e Precision Timed Machines
* Mixed Criticality and FlexPRET
* |/O and Interrupts
e Cost and Performance
* Programming Models
 Parametric PRET Machines

QP What is Real Time?

e fast computation

e prioritized scheduling
 computation on streaming data
* bounded execution time

* temporal semantics in programs
* temporal semantics in networks

Lee, Berkeley

5? What is Real Time?

e fast computation

e prioritized scheduling
 computation on streaming data
* bounded execution time

* temporal semantics in programs
* temporal semantics in networks

These are very different from one another.
We have to decide which to focus on.

Lee, Berkeley

@ Achieving Real Time

* overengineering

e using old technology
* response-time analysis
* real-time operating systems (RTOSs) ?;;

* specialized networks SPTE
* extensive testing and validation © = N~ Al

Lee, Berkeley -

5? Outline

* Cyber-Physical Systems
e Real Time
 Timing in Software
* Science and Engineering
e Precision Timed Machines
* Mixed Criticality and FlexPRET
* |/O and Interrupts
e Cost and Performance
* Programming Models
 Parametric PRET Machines

@ Schematic of a simple CPS:

Computational Network Computational
Platform Fabric Platform

Physical

plant

Computation given in an
untimed, imperative language.
Physical plant modeled with

ODEs or DAEs

Computational
Platform

1 void initTimer(void) {
SysTickPeriodSet (SysCtlClockGet () / 1000);
SysTickEnable ();

SysTickIntEnable ();

s}

6 volatile uint timer_c

7 void ISR(void) {
if (timer_count != 0) {

timer_count--;

ount = 0;

10 }

un }

1 int main(void) {
SysTickIntRegister (£ISR);
.. // other init

i = 2000;

while(timer_count !=
... code to run for 2

%
.. // other code \

Network
Fabric

Computational
Platform

Physical
plant

~ {mage: Wikimedia Commons

Computational | |»
>
Platform 3

e e
o = o o,

NN e
= o ©

void initTimer (void) <

SysTickPeriodSet (SysCtlClockGet () / 1000);

SysTickEnable ();
SysTickIntEnable ();

¢
volatile uint timer_count = O0;
void ISR(void) {
if (timer_count != 0) {
timer_count --;
-
}

int main(void) <{
SysTickIntRegister (ISR);
// other init

timer_count = 2000;
initTimer () ;
while(timer_count != 0) {

code to run for 2 seconds

¥

// other code

This code is attempting

to control timing. But

will it really?

1 Vo ini e o
2
El

[] [] 4
s)
6 volatile uint timer_count = 0;
7 void ISR(void) {
8 if (timer_count != 0) {

\ 9 timer_count--;
&

Computational
Platform

Timing behavior emerges from
the combination of the program
and the hardware platform.

void initTimer(void) {
SysTickPeriodSet (SysCtlClockGet () / 1000);
SysTickEnable ();
SysTickIntEnable ();

10

un }

1 int main(void) {
SysTickIntRegister (£ISR);
.. // other init
timer_count = 2000; \

initTimer () ; \

while(timer_count != 0) { \
... code to run for 2 secon ds \

} \

.. // other code

Network
Fabric

Computational
\ Platform

/— JTAG and SWD interface

Y .
' W 4 «—— USB interface

Physical

switches ;
connected gr'aphlcs i speaker
p I a n t to GPIO pins display B connected to
= GPIO or PWM

(11311

analog
(ADO)— & S
inputs dl < GPIO connectors
& — PWM outputs
removable : - o
flash — g8 =8 Wl—— CAN bus interface
memory
slot
'L Ethernet interface

Stellaris LM3S8962 evaluation board (Luminary Micro 2008, now Texas Instruments)

’J Frozen Designs

Everything about the design,
down to wire lengths and

microprocessor chips, must be
frozen at the time of design.

sessssnsnnsesennenes o sesene @ X

sesnnennoen
eesssanssaee sessesens o

> [

CCA2.0
Boeing Dreamscape

’ Timing is not part of
w software and network semantics

Correct execution of a program in all widely used
programming languages, and correct delivery of a network

message in all general-purpose networks has nothing to do
with how long it takes to do anything.

Programmers have to step outside the

programming abstractions to specify timing
behavior.

Lee, Berkeley

@ Contrast with correctness
~ criteria in software

We can safely
assert that line 8
does not execute,
regardless of the

choice of
microprocessor!

void foo(int32_t x) {
if (x > 1000) {
x = 1000;
+
if (x > 0) {
x = x + 1000;
if (x < 0) {

panic () ; -

© o = O e W N e

}

S
(-
(o

We can develop absolute
confidence in the software, in that
only a hardware failure is an excuse.

But not with regards to timing!!

@ Achieving Real Time

* overengineering

e using old technology
* model the processors for response-time analysis

* real-time operating systems (RTOSs) ?;
* specialized networks P~ R

e extensive testing and validation * \/{

S

Lee, Berkeley —_—

W

Pipeline hazards
Cache effects

Variable DRAM latencies
Speculative execution

Interrupts
Forwarding

Dynamic voltage/frequency

Image from Lee & Seshia,

Introduction to Embedded Systems

Lee, Berkeley

MIT Press, 2017

Timing of programs emerges from
the implementation

21N2ax3 apodap Y0194

Alowaw
_____(ynsa1y Jo peal Alowaw) prezeyeiep

}oegaium

=
[8] -
Instruction v -
memory ux)< |
|
‘ 25
Register o v
Decode =T
bank D R
N
l l 3 =
[] =9
o 19
S 3
Q. o
i
C Mux) ’Zero.‘ S]
| QT
§ g o 3§
~ o D
[} ' Ha)
ALU 53 3=
=

The Worst-Case Execution-Time

Problem—OQOverview of Methods and
Survey of Tools

REINHARD WILHELM TULIKA MITRA
ACM Tr. on Embedded Saarland University National University of Singapore
Computing Systems, April 2008 | jakoB ENGBLOM FRANK MUELLER
Virtutech AB North Carolina State University
ANDREAS ERMEDAHL ISABELLE PUAUT
Méalardalen University IRISA
NIKLAS HOLSTI PETER PUSCHNER
Tidorum Ltd. TU Vienna
STEPHAN THESING JAN STASCHULAT
Saarland University TU Braunschweig
. . and
The determination of upper bounds on PER STENSTROM
execution times, commonly called worst-case Chalmers University of Technology
execution times (WCETs), is a necessary step in |- .01 0 HECKMANN
the development and validation process for

hard real-time systems. This problem is hard if
the underlying processor architecture has
components such as caches, pipelines, branch
prediction, and other speculative components.

@ Modeling the Processor

Timing analysis requires detailed info about:
* The pipeline

 Cache management hardware

* Branch prediction hardware

* Bus arbitration hardware

e Memory management hardware

* DRAM architecture

When successful, the model is valid only for a
particular piece of silicon, not a family of chips.

@ Is the Analysis Valid?

Program with Interrupts

Almost all analysis
techniques become
invalid unless interrupts
are disabled.

This means:

* No operating system
* No packet network

* |/Ois by polling only

Lee, Berkeley

© 00 =N, ;e W N =

S S N N T T - e
OO N, R W N = O

void initTimer (void) {
SysTickPeriodSet (SysCtlClockGet () / 1000);
SysTickEnable () ;
SysTickIntEnable () ;

¥
volatile uint timer_count = O0;
void ISR (void) A{
if (timer_count != 0) {
timer_count --;
}
&

int main(void) {
SysTickIntRegister (&ISR);
. // other init

timer_count = 2000;
initTimer ();
while(timer_count != 0) {

. code to run for 2 seconds

}
. // other code

IEEE Computer, May, 2006.

Consider a situation where a rare event (e.g., fire
detection) requires a quick response (e.g., within
500 ps). Without interrupts, this implies:

* No task can take more than 500 pus

— Every task becomes time critical.

* The sensor has to be polled every 500 ps.

— Network and bus traffic and processor cycles wasted

QP Summary of the State of the Art

* Avoid modern technology (operating systemes,
programming languages, networks, multicore).

 Model the silicon you use in excruciating detail,
beyond what is documented.

* Break your tasks into tiny chunks and prove they do
not run longer than 500 ps.

* Schedule everything statically and periodically, even
for rare events and non-critical tasks.

 Don’t change anything after validating the design.

5? Outline

* Cyber-Physical Systems
e Real Time
* Timing in Software
* Science and Engineering
e Precision Timed Machines
* Mixed Criticality and FlexPRET
* |/O and Interrupts
e Cost and Performance
* Programming Models
 Parametric PRET Machines

QP An Epiphany

The Creative
Partnership
of Humans and
Technology

PLAT(

AND THE

NERL

EDWARD ASHFORD LEE

5? The Value of Models

* |n science, the value of a model lies in how well its
behavior matches that of the physical system.

* In engineering, the value of the physical system lies
in how well its behavior matches that of the model.

A scientist asks, “Can | make a model for this thing?”
An engineer asks, “Can | make a thing for this model?”

Lee, Berkeley

@ Consider Chip Design

A piece of silicon that
doesn’t behave like the
model is just beach

sand.
R
TN SN R AT N Q
Intel Haswell, each with 1.4 billion transistors
E o—e
Q
S

38

@ Models vs. Reality

z(t) = z(0) +/t o(r)dr | The model In this example,
10 : the modeling
v(t) = v(0)+ — / F(7)dr! framework is
X calculus and
I Newton’s laws.
e The target
(the thing S
being Fidelity is how
" Il the model
modeled). Well theé mode
and its target
match

Lee, Berkeley

A Model

7

Image by Dominique Toussaint, GNU Free Documentation License, Version 1.2 or later.

Lee, Berkeley

@ A Physical Realization
Hr‘“““‘“‘“

ee, Berkeley

QP Model Fidelity

 To a scientist, the model is flawed.
 To an engineer, the realization is flawed.

I’'m an engineer...

Perhaps we should be making our realizations
more faithful to our models rather than the
other way around?

Lee, Berkeley

“Essentially, all models are wrong,

III

but some are usefu

Box, G. E. P. and N. R. Draper, 1987: Empirical Model-Building and Response
Surfaces. Wiley Series in Probability and Statistics, Wiley.

“Essentially, all system implementations
are wrong, but some are useful.”

Lee and Sirjani, “What good are models,” FACS 2018.

Lee, Berkeley

QP The Value of Simulation

“Simulation is doomed to succeed.”

[anonymous]

Could this statement be confusing engineering
models for scientific ones?

Lee and Sirjani, “What good are models,” FACS 2018.

Lee, Berkeley

@ Changing the Question

Is the question whether our models describe the
behavior of real-time systems (with high
fidelity)?

Or

Is the question whether we can build real-time
systems where behavior matches that of our
models (with high probability)?

Lee, Berkeley

5? Outline

* Cyber-Physical Systems
e Real Time
* Timing in Software
* Science and Engineering
* Precision Timed Machines
* Mixed Criticality and FlexPRET
* |/O and Interrupts
e Cost and Performance
* Programming Models
 Parametric PRET Machines

@ Instruction Set Architecture (ISA)

The concept of an ISA —= ===
hasn’t changed much =
since the 1960s.

SSSSS

Fred Brooks
Photo courtesy of computerhistory.org

@?/ Instruction Set Architecture (ISA)

Physical System Model

| Integer Register-Register Operations

RISC-V defines several arithmetic R-type operations. All operations read the rs! and rs2 registers
as source operands and write the result into register rd. The funct field selects the type of operation.

~ady
o |

27 26 22 21 17 16 76 0
rd | rsl | rs2 | funct10 | opcode |
5 5) 10 T
dest srcl src2 ADD/SUB/SLT/SLTU (0
dest srcl src2 AND/OR/XOR (0)
dest srcl src2 SLL/SRL/SRA oP
dest srcl src2 ADDW/SUBW OP-32
dest srcl src2 SLLW/SRLW /SRAW OP-32

Waterman, et al., The RISC-V Instruction Set Manual,
UCB/EECS-2011-62, 2011

Image: Wikimedia Commons

An ISA is a deterministic model of the
behavior of hardware

Lee, Berkeley 48

The hardware out of which we build
’ / computers is capable of delivering “correct”

computations and precise timing...

Synchronous digital logic delivers e«—

precise, repeatable timing.

... but the overlaying software
abstractions discard timing.

Lee, Berkeley

Ol

// Perform the convolution.
for (int i=0; 1<10; i++) {

}

x[1] = al1]*b[j-1];
// Notify listeners.
notify(x[i])

’ / PRET Machines — Giving Software the

Capabillities its Hardware Already Has.

 PREcision-Timed processors = PRET
* Predictable, REpeatable Timing = PRET

* Performance with REpeatable Timing = PRET

http://chess.eecs.berkeley.edu/pret

// Perform the convolution.

for (int 1=0; 1<10; i++) {
x[1] = al[i]*b[J-1]; =
// Notify listeners.
notify(x[1]);

}

Computing

With time

Lee, Berkeley

’ / Major Challenges
| and existence proofs that they can be met

* Pipelines

* Memory hierarchy

* 1/0

Lee, Berkeley

Y Dipcline

Read after write, e.g.
i1. R2<-R5+R3 Pipeline
2. R4 <-R2+R3 bubble

Write after read
Write after write
Branch based on result

Image from Lee & Seshia,
Introduction to Embedded Systems
MIT Press, 2017

91NDoX9

____(unsai N1y Jo peas Aiowsw) prezeyeep

fowaw

¥oeqsium

Instruction
memory

Register

bank

Decode

“ 7 (Youeiq jeuonipuod) piezey jonuod [
(Youeiq paindwod) piezey eiep h

data

@ Three Generations of PRET
~ Machines at Berkeley

e PRET1, Sparc-based (simulation only)

e PTARM, ARM-based (FPGA implementation)

* FlexPRET, RISC-V-based (FPGA + simulation)

Lee, Berkeley

Instruction VT T

@ Multiple Register
~ Banks
memory | (" Mux)« | |

All our PRET machines have = |
multiple register banks, each :
providing a “hardware thread.” | e ||l

bank

Decode

T4

EN“

91NDoX9

____(unsai Ny 4o peai Aiowsw) paezey ey

Cost in hardware is modest.

“(Youelq jeuonipuod) piezey jonuod
(Youeiq paindwiod) piezey eiep

e A ——
D
g data
< memory
. |=
Image from Lee & Seshia, =
Introduction to Embedded Systems |§ Mux
2 N R —

MIT Press, 2017

Instruction VT T

@ Multiple Register
~ Banks
memory | (" Mux)« | |

If independent tasks are |
interleaved through the 2
pipeline, hazards disappear. register |]

bank

Decode

T4

EN“

91NDoX9

____(unsai Ny 4o peai Aiowsw) paezey ey

Can eliminate pipeline bubbles.

“(Youelq jeuonipuod) piezey jonuod
(Youeiq paindwiod) piezey eiep

e A ——
D
g data
< memory
. |=
Image from Lee & Seshia, =
Introduction to Embedded Systems |§ Mux
2 N R —

MIT Press, 2017

@ Pipeline Interleaving is Old

First used in the CDC 6600.

56

2nd Generation PRET

PTArm, a soft core on a
Xilinx Virtex 5 FPGA (2012)

* Four hardware threads

* Deterministic instruction timing
 Shared SRAM memory

* Partitioned DRAM memory

* Precise timing instructions

Lee, Berkeley

91NDoX9

___(unsain1v Jo peas Aowsw) prezeyeep

fowaw

¥oeqsium

Instruction
memory

|| Register

Decode

bank ||

“ 7 (Youeiq jeuonipuod) piezey jonuod [
(Youeiq paindwod) piezey eiep N

data

€P DRAM Memories

The latency of a DRAM memory access depends
on the address of the previous access.

i DIMM

< — = DRAM Device T S H e Uy H e |

< foo™] Control E — gty | pavice .-l\ 7 || pevico "—

Word line = Logic I ERCH AT ITAN :

" - == 1! tommand —fi__ S e !

j s q=: Row Bank ! — T r—

Addre: <] ! H

chip select Mode M~ xe : e R

| Register aines ~ I e T e i }(' ‘-

= % ; sl o et

_'___l_ | Lf-Rerresh = | Bee——ui] b=—_ i

N3 - = s » — =" - .us//‘:" } o 16 ‘
Bit line \ | __— — 1 0 RS o amay | £ eese LN L] oo |T]
\ etk Address |=—" 29 | ke, o L iy i
; 1| Register Vo s (O — ! ; 1 :

Transistor A= — Gating [T 88 . : i i i

— O+ > i *| x <1 .

- 1346 Do ! N\ : B

! -~ it i | ;

stlect 1 1 2

. g ' Rank0 | | Rank1 !

Figure 1: A dual-ranked dual in-line memory module. L) e

Assigning banks to hardware threads can make
this deterministic.

Reineke, Liu, Patel, Kim, & Lee. "PRET DRAM Controller: Bank Privatization for Predictability
and Temporal Isolation,” CODES+ISSS '11.

@Y, 2" Generation PRET

- Summary

registers

Interleaved SRAM DRAM main
pipeline with one scratchpad memory,
set of registers shared among separate banks
per thread threads per thread

Isaac Liu, PhD Thesis, 2012

5? Outline

* Cyber-Physical Systems
e Real Time
* Timing in Software
* Science and Engineering
e Precision Timed Machines
* Mixed Criticality and FlexPRET
* |/O and Interrupts
e Cost and Performance
* Programming Models
 Parametric PRET Machines

’@@ Mixed Criticality Systems

= |ncreasingly complex
functionality

+ Cost and size, weight and
power (SWaP) concerns

+ E.g. High-end cars with
70-100+ ECUs

[Tommy Wiklind]

Different importance, Development
safety, or certification Requirements and certification
requirements still met? costs?

Federated Integrated
architecture architecture

61

A% HRT and SRT

* Set of independent, periodic tasks t;, each assigned a
criticality level

release-..... R ... deadline
[wm |
<C i time
> DI] »
; .
* Each criticality level has a requirement regarding deadline
importance

hard real-time (HRT) tasks:

should never miss deadlines higher criticality levels

soft real-time (SRT) tasks: —

o ,) lower criticality levels
less utility if deadline missed

’ / Tradeoffs

/4

Hard real-time tasks

Isolation
(spatial and temporal)
independent behavior

/

+ Modularity

+ Independent verification

Efficient processor
utilization

+ Cost

|\

Timing predictability
Safe and tight bounds on worst-
case execution time (WCET)

|’
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
\

FlexPRET makes these
+ Verification tradeoffs at the task level
\ /4

.+ Less over provisioning ’ and not processor level.

\~ ———————————————————— -

3rd Generation PRET:

Open-Source FlexPRET (Zimmer 2014/15)

e 32-bit, 5-stage thread interleaved pipeline, RISC-V ISA

— Hard real-time HW threads:
scheduled at constant rate for isolation and repeatability.

— Soft real-time HW threads:
share all available cycles for efficiency.

* Deployed on Xilinx FPGA

>

Every 3 cycles Clock cycles
(unless done)

Whenever cycle available
(arbitrary interleaving) Digilent Atlys (Spartan 6) and

NI myRIO (Zync)

64

@ Hard and Soft
~ Real-Time Threads

HRTTs (when active) are
issued periodically according
to a fixed schedule.

SRTTs use all remaining
cycles.

apod

31NJ3X3
(1nsal NV 10 peas Alowsw) piezey e

fowaw

¥oeqsium

|

pomoe : fa
i ; : o
= ER

! el
———7]||| |Pecode =
' Q
| QN
IS
Register = 5
bank | 'g 2
) I 'S 3
o o
v = IC
'O I
(Mux) Zero? S 8
QT
& O Ho P
\/ 23 33

>

\ AU / S a 3z

> eu

FlexPRET

Hard-Real-Time (HRT) Threads
Interleaved with Soft-Real-Time (SRT) Threads

SRT thread

HRT thread

Hardware

thread memory
registers
HRT threads have SRAM DRAM main
deterministic timing. Scratchpad memory provides
SRIT threads share shared among deterministic latency
remaining cycles threads for HRT threads.
Conventional

behavior for the rest.

Michael Zimmer

@ FlexPRET Summary

RISC V ISA

5-stage, fine-grained multithreaded processor
designed for mixed-criticality systems.

Implemented with Chisel. Compiles to FPGA
and a C++ cycle-accurate simulator.

Class: 100-200MHz 32-bit embedded
processor.

Open source:
https://github.com/pretis/flexpret

Avionics Mixed Criticality

Test Case

Zimmer, PhD Thesis, 2015.

,
‘A’ level (most critical)
tasks on separate

L threads

(‘B’ level (critical) tasks

on a thread using non-
preemptive static
\ scheduler

‘B’ level (critical) tasks
on a thread using rate-
L monotonic scheduler

4)

‘C’ and ‘D’ level (less
critical) tasks on
threads that use

earliest deadline first

v

——

(EDF)

_ J

Abstract workload of
21 tasks derived
from a time-
partitioned avionics
system® with 93%
utilization
Each iteration
performs identical
computation, but...
\\‘\

Deployed on 8 HW
threads

B & Dn
’- | 1y
/| | 1) T
oo | | Isolated execution time VT3
E 'm '-. -
1
S T
L ronoo
|
""" g - NN
] 0 B NN\
I R TR A AT
t (ms)

S. Vestal, “Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance,” in RTSS 2007.

Execution time
dependent on HRTTs

5? Outline

* Cyber-Physical Systems
e Real Time
* Timing in Software
* Science and Engineering
e Precision Timed Machines
* Mixed Criticality and FlexPRET
e |/O and Interrupts
e Cost and Performance
* Programming Models
 Parametric PRET Machines

@ About Interrupts

“IM]any a systems programmer’s
grey hair bears witness to the
fact that we should not talk
lightly about the logical problems
created by that feature”

- Edsger Dijkstra (1972)

Lee, Berkeley

@ Interrupts

Nondeterministically interleaved with program
Make response time > execution time

Disrupt cache and branch predictors

Overhead of context switching

For WCET analysis, have to disable interrupts

Disabling interrupts increases variability in
response time and forces all tasks to be small.

Lee, Berkeley

@ Interrupts

Scientific solution:
e Model all these effects

Engineering solution:
* Eliminate all these effects

The latter is what PRET machines do.

Lee, Berkeley

@? FlexPRET 1/O
~ Interrupt Handler Thread Option 1

Interrupt Handler Thread

Hardware
thread memory

registers

Such interrupts have
no effect on HRT threads, and
bounded effect on SRT threads!

A similar strategy is
also used by XMOS,

Michael Zimmer but with less isolation.

’ FlexPRET 1/O
~ Interrupt Handler Thread Option 2

Interrupt Handled
conventionally by a SRTT

Hardware

thread memory

registers

Such interrupts have
no effect on HRT threads, and
bounded effect on SRT threads
other than the handling thread.

Michael Zimmer

5? Outline

* Cyber-Physical Systems
e Real Time
* Timing in Software
* Science and Engineering
* Precision Timed Machines
* Mixed Criticality and FlexPRET
* |/O and Interrupts
e Cost and Performance
* Programming Models
 Parametric PRET Machines

The real-time performance of a FlexPRET
machine is never worse than that of a
conventional machine.

Proof: A FlexPRET machine is a conventional
machine if the memory-mapped registers
controlling HRT and SRT threads is set to have
only one thread, a SRT thread.

Lee, Berkeley

€P The Cost

Size:
H Flip-flops (FF) I:I [Lookup-tables (LUT) =
Ne)
£ 6,000 3 o 15
2 % -
S 5,000 > e al =
g 00 = o) e -
S 4,000 00 5 o3 0
< 3,000 . L s o 3 o
&~ 2000 < %0 N i —
’ 2 Q S ~ -
1,000 v
L ml | |9 e I
< 4\ 3] \
S SGA@"‘ Q@«A Se,%«f?g‘ ?@@% @"ﬂﬁ 6@@‘
T et T et Q\e‘l»?% ?\eﬂg%
[Zimmer, Broman, Shaver, Lee, RTAS 2014]
Lee, Berkeley

A baseline RISC-V without any complex
instructions (floating point, integer division,
packed instructions) can be realized on an FPGA
with 580 flip flops and 2,788 LUTs.

A 4-thread FlexPRET can be realized with 908
flip flops and 3,943 LUTs, an increase of 56% and
41% respectively.

Percentage is much lower with floating point, division, etc.
[Zimmer, Broman, Shaver, Lee, RTAS 2014]

Lee, Berkeley

@ Abstract PRET Machines (APM)

Abstract PRET Machines

Invited TCRTS award paper

Edward A. Lee (award recipient) Jan Reineke

RTSS, 2017, Paris.

This paper shows that achieving deterministic response
times that meet deadlines, when that is feasible,
comes at no cost in worst-case response times.

Michael Zimmer

This is shown for a task model of N sporadic
independent tasks with deadlines.

Lee, Berkeley

@ Intuition

* N sporadic real-time tasks with minimum
interarrival time T, deadlines D,, and WCET C.

Theorem: When T, = D,, PRET yields deterministic
response times no worse than the worst case
response time of a conventional architecture.

When T, > D, if any processor can deliver
deterministic response times, PRET will, with worst
case response time no worse than a conventional
architecture.

Lee, Berkeley

At modest hardware cost, FlexPRET offers the
possibly of isolated hard-real-time tasks that are
unaffected by interrupts and other real-time
tasks.

This comes at no cost in performance.

Considering the elimination of pipeline bubbles,
for some workloads, it improves performance.

’ Benefits of PRET
~ (Even if you don’t care about determinism)

* Very low context switch overhead
— Up to the number of hardware threads.

— Conventional overhead above that.
e Tighter WCET analysis

— Particularly when activating enough threads to
eliminate pipeline bubbles and memory access
order dependencies.

* No longer need to be restricted to polling 1/0
— Effect of interrupts is bounded.

Lee, Berkeley

’ Benefits of PRET
~ (If you take advantage of determinism)
 Modularity

— Non-interference between tasks.
— Interrupts have exactly no effect on hard-real-time tasks.

* Exacthess
— Can get not just WCET, but actual ET.
— Not just ET, but response time.
* Repeatability
— Works in the field like on the bench.
— Event ordering can be made invariant.
 Complexity
— More hard-real-time tasks is better than fewer.
e Certifiability
— Every correct execution of the software gives the same behavior.
Energy
— Reduce voltage and frequency to the bare minimum to meet deadlines.

Lee, Berkeley

* With enoug
every cycle
no pipeline

N concurrency in the application,
oerforms useful work (no speculation,

bubbles, no memory stalls)

* Flexibility for logical operating frequency of each
thread (load balancing)

* Predictability enables tighter bounds on worst-
case execution time (WCET)

* Voltage and frequency can be reduced until all
deadlines are barely met.

€P One way to Make PRET Widespread

Real-Time Units (RTUs)

e Offload timing-critical functions
to the RTU

GPU CPU |9 RTU

Custom peripheral, e.g.

(N

e Software peripherals

e Software APIl: OpenRT?

«1» Variable
.., duty-cycle
0

protocol

) 1250 ns,

Lee, Berkeley 85

gP So why isn’t every modern
~ processor a FlexPRET?

Possibilities:

* Our claims look too good to be true.

* Programming models that can take advantage
of this are missing.

5? Outline

* Cyber-Physical Systems
e Real Time
* Timing in Software
* Science and Engineering
e Precision Timed Machines
* Mixed Criticality and FlexPRET
* |/O and Interrupts
e Cost and Performance
* Programming Models
 Parametric PRET Machines

@ Basic Timing Control in PRET

Extended RISC-V ISA with timing instructions.

E.g. Hard-real-time periodic task:

.) Compute
internal c.Iock time r; /[futureptime J
value (in get_time(r);
nanoseconds) while(l) { .
add_ms(r, 10); interEt)J(S’Eel::iI(;’rc]time
If here, no deadline except1. on_on_expire(r); 4] r (deadline miss)
miss so deactivate \ taSkO_ ’ :
deactivate_exception();
delay_unti1(r); Wait until next
} \ period, SRTT can

use allocated
cycles

Bui, Lee, Liu, Patel, and Reineke, “Temporal isolation
on multiprocessing architectures,” DAC 2011.

’/ Four Patterns of
w Timed Code Blocks

V3] Immediate miss detection

V1] Best effort:

set _time r1, 1s
exception_on_expire r1, 1

set _time r1, 1s
/| Code block // Code block

deactivate exception 1
delay_until r1

delay_until r1

V2] Late miss detection V4] Exact execution:
set_time r1, 1s set_time r1, 1s

// Code block /| Code block

branch _expired r1, <target> MTED r1

delay until r1

Lee, Berkeley 89

@ Higher-Level Programming
w Models

The above patterns are rather low level. Come
next week for higher-level programming models
that map beautifully to PRET (as well as to
conventional architectures).

The whole point of an ISA is that the same

program does the same thing on multiple
hardware realizations.

Isn’t this incompatible with deterministic timing?

Lee, Berkeley

5? Outline

* Cyber-Physical Systems
e Real Time
* Timing in Software
* Science and Engineering
e Precision Timed Machines
* Mixed Criticality and FlexPRET
* |/O and Interrupts
e Cost and Performance
* Programming Models
 Parametric PRET Machines

@ Parametric PRET set_time r, 1s
~ Machines MTFD r1

ISA that admits a variety of implementations:

« Variable clock rates and energy profiles

« Variable number of cycles per instruction

« Latency of memory access varying by address
* Varying sizes of memory regions

A given program may meet deadlines on only some
realizations of the same parametric PRET [ISA.

Lee, Berkeley

@

set _time r1, 1s
// Code block
MTFD r1

architecture
parameters

checker

-— certificate

Realizing the MTFD instruction on a
Parametric PRET machine

linker
loader

analyzer
source '
H
code compiler

=

includes includes predicate
MTFD code MTFD to be
blocks instructions satisfied

object code

The goal is to make software that will run correctly on many implementations
of the ISA, and that correctness can be checked for each implementation.

Lee, Berkeley

absolute
confidence
software

@ Research Opportunities

* Exploiting potential reduction in energy

* Programming models with temporal semantics

e Synthesizing HRT thread schedules on the fly

e OS support for dynamic HRT thread instantiation

Lee, Berkeley

* Inscience, the value of a model lies in
how well its behavior matches that of
the physical system.

* Inengineering, the value of the physical
system lies in how well its behavior
matches that of the model.

My message:
Do less science and more engineering.

http://ptolemy.berkeley.edu/pret
http://ptolemy.berkeley.edu/ptides

The Creative
Partnership
of Humans and
Technology

PLAT(

AND THE

NERD

EDWARD ASHFORD LEE

http://platoandthenerd.org

