

University	of	California,	Berkeley	

Concurrent	Models	of	Computation	
Edward	A.	Lee	

	

Saclay,	France,	Jan.	30,	2020	
Université	Paris-Saclay	

Design,	Modeling,	and	Architecture	of	Complex	Industrial	Systems	(COMASIC)	
Masters	Program	

These	slides	

2

http://ptolemy.org/~eal/presentations/Lee_ModelBasedDesignOfCPS_Saclay.pdf

http://ptolemy.org/~eal/presentations/Lee_ConcurrentModelsOfComputation_Saclay.pdf

Last Week: This Week:

Outline	

•  Definitions	
•  Threads	
•  Alternatives	to	Threads	
•  Actors	
•  Ports,	Hierarchy,	and	Scheduling	
•  Deterministic	Concurrency	
•  Time	
•  Discrete-Event	Languages	
•  Reactors	

3

What	is	a	Model?	

4

A	model	is	any	description	of	a	system	that	is	
not	the	“thing-in-itself.”	
(das	Ding	an	sich		in	Kantian	philosophy).

Model	of	Computation	

US	NIST:	
•  A	formal,	abstract	definition	of	a	computer.	
	
Wikipedia	(on	1/18/20):	
•  a	model	which	describes	how	an	output	of	a	
mathematical	function	is	computed	given	an	
input.	

5

Example	MoCs	

Sequential:	
•  Finite	state	machines	
•  Pushdown	automata	
•  Turing	machines	
	
Functional:	
•  Lambda	calculus	
•  Recursive	functions	
•  Combinatory	logic	
•  Rewriting	systems	
	
	
	

Concurrent:	
•  Cellular	automata	
•  Kahn	process	networks	
•  Petri	nets	
•  Dataflow	
•  Actors	
•  CSP	(rendezvous)	

Timed	&	Concurrent:	
•  Synchronous/Reactive	
•  Discrete	events	
•  Continuous	time	

6

Concurrent	MoCs	

7

http://ptolemy.org/systems

“the rules that govern
concurrent execution of
the components and
the communication
between components”

Concurrency

From the Latin,
concurrere,
“run together”

Concurrency	

Google:	
•  the	fact	of	two	or	more	events	or	circumstances	
happening	or	existing	at	the	same	time.	

Dictionary.com:	
•  simultaneous	occurrence;	coincidence.	

Webster:	
•  the	simultaneous	occurrence	of	events	or	
circumstances	

9

Points of Confusion

•  The role of time
•  Synchrony and asynchrony
•  Concurrent vs. parallel
•  Concurrent vs. nondeterministic

Layers of Abstraction for
Concurrency in Programs

Uses of Concurrency in Software

u  Reacting to external events (interrupts)

u  Exception handling (software interrupts)

u  Creating the illusion of simultaneously running
different programs (multitasking)

u  Exploiting parallelism in the hardware (multicore,
VLIW, server farms)

u  Dealing with real-time constraints (preemption,
deadlines, priorities)

u  Distributed computation (networked)

Outline	

•  Definitions	
•  Threads	
•  Alternatives	to	Threads	
•  Actors	
•  Ports,	Hierarchy,	and	Scheduling	
•  Deterministic	Concurrency	
•  Time	
•  Discrete-Event	Languages	
•  Reactors	

13

Threads

Threads are sequential concurrent procedures that
share memory.

They have been the most commonly used
mechanism for building concurrent software, but this
is changing, for good reasons.

Processes are collections of threads with their own
memory. Communication between processes occurs
via OS facilities (like pipes, sockets, or files).

Thread Mechanisms

u  Without an OS, multithreading is achieved with interrupts.
Timing is determined by external events.

u  Generic OSs (Linux, Windows, OSX, …) provide thread
libraries (e.g. pthreads) and provide no guarantees about
when threads will execute.

u  Real-time operating systems (RTOSs), like FreeRTOS,
QNX, VxWorks, RTLinux, support a variety of ways of
controlling when threads execute (priorities, preemption
policies, deadlines, …).

Posix Threads (pthreads)

pthreads is an API (Application Program Interface)
implemented by many operating systems, both real-
time and not. It is a library of C procedures.

Standardized by the IEEE in 1988 to unify variants of
Unix. Subsequently implemented in most other
operating systems.

Some languages have threads built in, like Java,
which uses pthreads under the hood.

Creating and Destroying
Threads

#include <pthread.h>

void* threadFunction(void* arg) {
 ...

 return pointerToSomething or NULL;

}

int main(void) {

 pthread_t threadID;
 void* exitStatus;

 int value = something;

 pthread_create(&threadID, NULL, threadFunction, &value);
 ...

 pthread_join(threadID, &exitStatus);

 return 0;

}

Can pass in pointers to shared variables.

Can return pointer to something.
Do not return a pointer to an local variable!

Return only after all threads have terminated.

Becomes arg parameter to
threadFunction.
Why is it OK that this is a
local variable?

Create a thread (may or may not start running!)

What’s Wrong with This?
#include <pthread.h>
#include <stdio.h>

void *my_thread() {

 int ret = 42;

 return &ret;

}

int main() {

 pthread_t task_id;
 void *status;

 pthread_create(&task_id, NULL, my_thread, NULL);

 pthread_join(task_id, &status);

 printf("%d\n",*(int*)status); return 0;

}

Don’t return a pointer to a local
variable, which is on the stack.

Notes
u  Threads can (and often do) share variables
u  Threads may or may not begin running immediately

after being created.
u  A thread may be suspended between any two

atomic instructions (typically, assembly instructions,
not C statements!) to execute another thread and/or
interrupt service routine.

u  Threads can often be given priorities, but these may
not be respected by the thread scheduler.

u  Threads may block on semaphores and mutexes.

A	Scenario	
Under	Integrated	Modular	Avionics,	software	
in	the	aircraft	engine	continually	runs	
diagnostics	and	publishes	diagnostic	data	on	
the	local	network.	

Proper software
engineering practice
suggests using the
observer pattern.

An observer
process updates
the cockpit display
based on
notifications from
the engine
diagnostics.

Typical thread programming
problem

“The Observer pattern defines a one-to-many
dependency between a subject object and any
number of observer objects so that when the
subject object changes state, all its observer
objects are notified and updated
automatically.”

Design Patterns, Eric Gamma, Richard Helm,
Ralph Johnson, John Vlissides
(Addison-Wesley, 1995)

Observer Pattern in C
// Value that when updated triggers notification
// of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Value that when updated triggers notification of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

Observer Pattern in C

typedef void* notifyProcedure(int);
struct element {
 notifyProcedure* listener;
 struct element* next;
};
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

Observer Pattern in C
// Value that when updated triggers notification of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {
 if (head == 0) {
 head = malloc(sizeof(elementType));
 head->listener = listener;
 head->next = 0;
 tail = head;
 } else {
 tail->next = malloc(sizeof(elementType));
 tail = tail->next;
 tail->listener = listener;
 tail->next = 0;
 }
}

// Value that when updated triggers notification of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

Observer Pattern in C

// Procedure to update the value
void update(int newValue) {
 value = newValue;
 // Notify listeners.
 elementType* element = head;
 while (element != 0) {
 (*(element->listener))(newValue);
 element = element->next;
 }
}

// Value that when updated triggers notification of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

Observer Pattern in C

Will this work in a
multithreaded context?

Will there be
unexpected/undesirable
behaviors?

Observer Pattern in C:
How to make this thread safe?

// Value that when updated triggers notification of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {
 if (head == 0) {
 head = malloc(sizeof(elementType));
 head->listener = listener;
 head->next = 0;
 tail = head;
 } else {
 tail->next = malloc(sizeof(elementType));
 tail = tail->next;
 tail->listener = listener;
 tail->next = 0;
 }
}

Using Posix mutexes on
the observer pattern in C

#include <pthread.h>
...
pthread_mutex_t lock;

void addListener(notify listener) {
 pthread_mutex_lock(&lock);
 ...
 pthread_mutex_unlock(&lock);
}

void update(int newValue) {
 pthread_mutex_lock(&lock);
 value = newValue;
 elementType* element = head;
 while (element != 0) {
 (*(element->listener))(newValue);
 element = element->next;
 }
 pthread_mutex_unlock(&lock);
}

int main(void) {
 pthread_mutex_init(&lock, NULL);
 ...
}

However, this carries a
significant deadlock risk.
The update procedure
holds the lock while it
calls the notify
procedures. If any of
those stalls trying to
acquire another lock, and
the thread holding that
lock tries to acquire this
lock, deadlock results.

After years of use without problems, a Ptolemy Project code review found
code that was not thread safe. It was fixed in this way. Three days later, a
user in Germany reported a deadlock that had not shown up in the test suite.

One possible “fix” #include <pthread.h>
...
pthread_mutex_t lock;

void addListener(notify listener) {
 pthread_mutex_lock(&lock);
 ...
 pthread_mutex_unlock(&lock);
}

void update(int newValue) {
 pthread_mutex_lock(&lock);
 value = newValue;
 ... copy the list of listeners ...
 pthread_mutex_unlock(&lock);
 elementType* element = headCopy;
 while (element != 0) {
 (*(element->listener))(newValue);
 element = element->next;
 }
}

int main(void) {
 pthread_mutex_init(&lock, NULL);
 ...
}

What is wrong with this?

Notice that if multiple
threads call update(), the
updates will occur in
some order. But there is
no assurance that the
listeners will be notified in
the same order. Listeners
may be mislead about the
“final” value.

This is a very simple, commonly used design
pattern. Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

“Humans are quickly overwhelmed by concurrency and
find it much more difficult to reason about concurrent
than sequential code. Even careful people miss possible
interleavings among even simple collections of partially
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency revolution.
ACM Queue, 3(7), 2005.

If concurrency were intrinsically hard, we would
not function well in the physical world

It is not
concurrency that
is hard…

…It is Threads that are Hard!

Threads are sequential processes that share
memory. From the perspective of any thread,
the entire state of the universe can change
between any two atomic actions (itself an ill-
defined concept).

Imagine if the physical world did that…

What	it	Feels	Like	to	Use	Mutexes	

Im
ag

e
“b

or
ro

we
d”

 f
ro

m
 a

n
Io

m
eg

a
ad

ve
rt

is
em

en
t

fo
r

Y2
K

so
ft

wa
re

an

d
di

sk
 d

ri
ve

s,
 S

ci
en

ti
fi

c
A

m
er

ic
an

, S
ep

te
m

be
r

19
99

.

Claim	

	
Nontrivial	software	written	with	threads,	
semaphores,	and	mutexes	is	incomprehensible	to	
humans.	
	
à  Need	better	ways	to	program	concurrent	systems	

	
à  Better	tools	to	analyze	and	reason	about	concurrency	

(e.g.	model	checking)	

Do	Threads	Have	a	Sound	
Foundation?	

If	the	foundation	is	bad,	
then	we	either	tolerate	
brittle	designs	that	are	
difficult	to	make	work,	
or	we	have	to	rebuild	
from	the	foundations.	

Note that this whole thing
is held up by threads

Problems with the Foundations

A model of computation:

•  Bits: B = {0, 1}
•  Set of finite sequences of bits: B*
•  Computation: f : B*→ B*

•  Composition of computations: f • f '
•  Programs specify compositions of computations

Threads augment this model to admit concurrency.

But this model does not admit concurrency gracefully.

Basic Sequential Computation

initial state: b0 ∈ B*

final state: bN

sequential
composition

bn = fn (bn-1)

Formally, composition of computations is function composition.

When There are Threads,
Everything Changes

suspend

A program no longer
computes a function.

resume

another thread can
change the state

bn = fn (bn-1)

b'n = fn (b'n-1)

Apparently, programmers find this
model appealing because nothing has
changed in the syntax.

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the
nondeterminism by imposing constraints on
execution order (e.g., mutexes) and limiting
shared data accesses (e.g., OO design).

Incremental Improvements to Threads

•  Object Oriented programming
•  Coding rules (Acquire locks in the same order…)
•  Libraries (Stapl, Java concurrent collections, …)
•  Message passing (Actors, …)
•  Publish and subscribe (ROS, MQTT, DDS, …)
•  Transactions (Databases, …)
•  Patterns (MapReduce, …)
•  Formal verification (Model checking, …)
•  Enhanced languages (Split-C, Cilk, Guava, …)
•  Enhanced mechanisms (Promises, futures,

asynchronous atomic callbacks …)

Threads:	An	Unnecessary	Source	of	
Nondeterminism	in	Software	

Threads	are	slowly	getting	replaced.	
E.g.:	
•  Asynchronous	atomic	callbacks	

–  Python,	Node.js,	Vert.x,		…	
•  Actors	

–  Akka,	Orleans,	Ray,	…		
•  Pub-Sub	

–  ROS,	Vert.x,	DDS,	…	
•  …	

42 Lee, Berkeley

2006

Message-passing	programs	may	be	better	

But there is still risk of
deadlock and
unexpected
nondeterminism!

Recall	Challenge	Problem	

A	software	
component	on	a	
microprocessor	in	an	
aircraft	door	provides	
two	network	services:	
1.  “open”	
2.  “disarm”	
Assume	state	is	
closed	and	armed.	
What	should	it	do	
when	it	receives	a	
request	“open”?	

44

Image by Christopher Doyle from
Horley, United Kingdom - A321 Exit
Door, CC BY-SA 2.0

Recall	Challenge	Problem	

A	software	
component	on	a	
microprocessor	in	an	
aircraft	door	provides	
two	network	services:	
1.  “open”	
2.  “disarm”	
Assume	state	is	
closed	and	armed.	
What	should	it	do	
when	it	receives	a	
request	“open”?	

45 Image from The Telegraph, Sept. 9, 2015

Outline	

•  Definitions	
•  Threads	
•  Alternatives	to	Threads	
•  Actors	
•  Ports,	Hierarchy,	and	Scheduling	
•  Deterministic	Concurrency	
•  Time	
•  Discrete-Event	Languages	
•  Reactors	

46

Asynchronous	Atomic	Callbacks	

•  Main	event	loop.	
•  Event	handlers	(“callbacks”)	run	to	
completion	atomically.	

Augment	with	worker	threads	that	
communicate	with:	
•  Immutable	data	
•  Publish-and-subscribe	busses	

47

Asynchronous	Atomic	Callbacks:	
Periodic	Actions	

•  Shared	variable	x	
•  Timed	actions	on	x	

•  +1	every	second	
•  −2	every	two	seconds	
•  Observe	every	4	seconds	

48

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

On Node.js v5.3.0, MacOS Sierra:

0, 0, 0, 0, 0, −1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …

“Toyota”	Style	of	Design	

NASA's	Toyota	Study	Released	by	Dept.	of	
Transportation	released	in	2011	found	that	
Toyota	software	was	“untestable.”	

49

Possible
victim of

unintended
acceleration.

Publish	and	Subscribe	(Pub	Sub)	

50

Broker Publisher

Subscriber

Subscriber

Subscriber
Publish to
Topic: Temperature
Data: 18 Data: 18 Data: 18 Data: 18

Subscribe to Topic:
Temperature

Etc.

Recall	Challenge	Problem	

A	software	
component	on	a	
microprocessor	in	an	
aircraft	door	provides	
two	network	services:	
1.  “open”	
2.  “disarm”	
Assume	state	is	
closed	and	armed.	
What	should	it	do	
when	it	receives	a	
request	“open”?	

51

Image by Christopher Doyle from
Horley, United Kingdom - A321 Exit
Door, CC BY-SA 2.0

Recall	Challenge	Problem	

A	software	
component	on	a	
microprocessor	in	an	
aircraft	door	provides	
two	network	services:	
1.  “open”	
2.  “disarm”	
Assume	state	is	
closed	and	armed.	
What	should	it	do	
when	it	receives	a	
request	“open”?	

52 Image from The Telegraph, Sept. 9, 2015

Another	Answer	to	Threads:	
Actors	

Actors	are	concurrent	objects	that	communicate	
by	sending	each	other	messages.	
	
•  Erlang	[Armstrong,	et	al.	1996]	

•  Rebeca	[Sirjani	and	Jaghoori,	2011]	
•  Akka	[Roestenburg,	et	al.	2017]	
•  Ray	[Moritz,	et	al.	2018]	
•  …	

53 Lee, Berkeley

Cyber	Physical	Systems	Demand	
More	

54

Predictability requires determinacy and depends on
timing, including execution times and network delays.

Motivation:		
Some	Questions	of	Interest	

55

What combinations of
periodic, sporadic, arrival
curve behaviors are
manageable?

How do execution times
affect feasibility? How can
we know execution times?

How do we get
repeatable and
testable behavior even
when communication is
across networks?

How do we specify,
ensure, and enforce
deadlines?

Outline	

•  Definitions	
•  Threads	
•  Alternatives	to	Threads	
•  Actors	
•  Ports,	Hierarchy,	and	Scheduling	
•  Deterministic	Concurrency	
•  Time	
•  Discrete-Event	Languages	
•  Reactors	

56

Actors,	Loosely	

	
	
Actors	are	concurrent	objects	that	communicate	
by	sending	each	other	messages.	

57

Hewitt/Agha	Actors	

Data	+	Message	Handlers	

58

Private Data

Message Queue Messages In Messages Out

Handler B

Handler A

X

X.A(args)

X.B(args)

X.A(args)

Y.C(args)

Y.D(args)

[Hewitt, 1977] [Agha, 1986, 1990, 1997]

Example	

59

An	actor	with	simple	operations	on	its	state:	

Actor Foo {
 int state = 1;
 handler double(){
 state *= 2;
 }
 handler increment(arg){
 state += arg;
 print state;
 }

}

Example	

60

An	actor	that	uses	actor	Foo:	
	
	
	
	
	
	
Semantics	is	“send	and	forget.”	

Actor Bar {
 handler main(){
 Foo x = new Foo();
 x.double();
 x.increment(1);
 }

}

Composition	

61

What is printed?

Actor Bar {
 handler main(){
 Foo x = new Foo();
 x.double();
 x.increment(1);
 }

}

Actor Foo {
 int state = 1;
 handler double(){
 state *= 2;
 }
 handler increment(arg){
 state += arg;
 print state;
 }

}

Pass-Through	Actor	

62

Baz:	Given	an	actor	of	type	Foo,	send	it	“double”:	

Actor Baz {
 handler pass(Foo x){
 x.double();
 }

}

New	Composition	

63

What is printed? Actor Bar {
 handler main(){
 Foo x = new Foo();
 Baz z = new Baz();
 z.pass(x);
 x.increment(1);
 }

}

Actor Foo {
 int state = 1;
 handler double(){
 state *= 2;
 }
 handler increment(arg){
 state += arg;
 print state;
 }

}

Actor Baz {
 handler pass(Foo x){
 x.double();
 }

}

Hewitt/Agha	Actors	are		
Not	Predictable	

Messages	are	handled	in	nondeterministic	order.	

64

Private Data

Message Queue Messages In Messages Out

Handler B

Handler A

X

Aside:	Innovation	in	Ray		

65

Messages	can	return	“futures”:	
	
	
	
	
	
	
Semantics	is	still	“send	and	forget,”	but	later	
remember.	

Actor Bar {
 handler main(){
 Foo x = new Foo();
 Future a = x.double();
 Future b = x.increment(1);
 print a.get() + b.get();
 }

}

[Moritz, et al. 2017]

Unexpected	Nondeterminism	
Example	from	Ray	

The	Relay	actor	is	the	actor	version	of	a	“no	op,”	
but	it	makes	the	program	nondeterministic.	

66 Lee, Berkeley

future

future

remote

remote

remote

future
double

x = X.remote();
relay = Relay.remote();
first = relay.double.remote(incrementor);
second = x.increment.remote();
return ray.get(first) + ray.get(second);

increment

x:X

relay

relay:Relay

class Relay():
 def relay(self, x):
 return x.double.remote();

class X():
 def __init__(self):
 self.count = 0;
 def double(self):
 self.count *= 2;
 return self.count;
 def increment(self):
 self.count += 1;
 return self.count;

[Moritz, et al., “Ray: A Distributed Framework for Emerging AI Applications” arXiv, 2018]

One	Solution:	
Analyze	and	Use	Dependencies	

67

But how? Where is the
dependence graph?

Actor Bar {
 handler main(){
 Foo x = new Foo();
 Baz z = new Baz();
 z.pass(x);
 x.increment(1);
 }

}

Actor Foo {
 int state = 1;
 handler double(){
 state *= 2;
 }
 handler increment(arg){
 state += arg;
 print state;
 }

}

Actor Baz {
 handler pass(Foo x){
 x.double();
 }

}

One	Solution:	
Analyze	and	Use	Dependencies	

68

And what if the dependence
graph is data dependent?

Actor Bar {
 handler main(){
 Foo x = new Foo();
 Baz z = new Baz();
 z.pass(x);
 x.increment(1);
 }

}

Actor Foo {
 int state = 1;
 handler double(){
 state *= 2;
 }
 handler increment(arg){
 state += arg;
 print state;
 }

}

Actor Baz {
 handler pass(Foo x){
 if (something) {
 x.double();
 }
 }

}

Outline	

•  Definitions	
•  Threads	
•  Alternatives	to	Threads	
•  Actors	
•  Ports,	Hierarchy,	and	Scheduling	
•  Deterministic	Concurrency	
•  Time	
•  Discrete-Event	Languages	
•  Reactors	

69

Part	1	of	our	Solution:	
Ports	

70

increment

double
reactor Bar {
 output double:bool;

 output increment:int;
 reaction(startup){
 set(double, true);
 set(increment, 1);
 }

}

reactor Baz {
 input in:bool;
 output out:bool;
 reaction(in)->out{
 set(out, in);
 }

}

out in

Instead of
referring to
other actors,
an actor refers
to its own
ports.

[Ptolemeus, 2014]

Part	1	of	our	Solution:	
Ports	

71

Input ports do
not look much
different from
ordinary
message
handlers.

reactor Foo {
 input double:bool;
 input increment:int;
 state s:int(1);
 reaction(double){
 s *= 2;
 }
 reaction(increment){
 s += increment;
 print(s);
 }
}

increment

double

Part	2	of	our	Solution:	
Hierarchy	

72

main reactor Top {
 x = new Foo();
 y = new Bar();
 z = new Baz();
 y.double -> z.in;
 y.increment -> x.increment;
 z.out -> x.double;
}

Part	3	of	our	Solution:	
Scheduling	

73

main reactor Top {
 x = new Foo();
 y = new Bar();
 z = new Baz();
 y.double -> z.in;
 y.increment -> x.increment;
 z.out -> x.double;
}

Scheduling becomes especially
interesting when production or
consumption of messages is
data dependent.

Ensure that Baz completes
before Foo’s handlers are
invoked.

Outline	

•  Definitions	
•  Threads	
•  Alternatives	to	Threads	
•  Actors	
•  Ports,	Hierarchy,	and	Scheduling	
•  Deterministic	Concurrency	
•  Time	
•  Discrete-Event	Languages	
•  Reactors	

74

Towards	Deterministic	Concurrency	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	

75

Ptolemy	II	

76

http://ptolemy.org

Ptolemy II has
implementations of all of
these and a few more with
extensive demos.

Towards	Deterministic	Concurrency	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	

77

Dataflow	

•  Computation	Graphs	[Karp,	1966]	
•  Dataflow	[Dennis,	1974]	
•  Dynamic	dataflow	[Arvind,	1981]	
•  Structured	dataflow	[Matwin	&	Pietrzykowski	1985]	
•  K-bounded	loops	[Culler,	1986]	
•  Synchronous	dataflow	[Lee	&	Messerschmitt,	1986]	
•  Structured	dataflow	and	LabVIEW	[Kodosky,	1986]	
•  PGM:	Processing	Graph	Method	[Kaplan,	1987]	
•  Dataflow	synchronous	languages	[Lustre,	Signal,	1980’s]	
•  Well-behaved	dataflow	[Gao,	1992]	
•  Boolean	dataflow	[Buck	and	Lee,	1993]	
•  Multidimensional	SDF	[Lee,	1993]	
•  Cyclo-static	dataflow	[Lauwereins,	1994]	
•  Integer	dataflow	[Buck,	1994]	
•  Bounded	dynamic	dataflow	[Lee	and	Parks,	1995]	
•  Heterochronous	dataflow	[Girault,	Lee,	&	Lee,	1997]	
•  …	

78

Jack Dennis

Dataflow	Solution	for	Scheduling:	
Firing	Rules	

79

An actor with no inputs
can fire at any time.

Fire!

Tokens produced

[Lee & Matsikoudis, 2009]

Dataflow	Solution	for	Scheduling:	
Firing	Rules	

80

An actor with inputs has to
specify at all times how
many tokens it needs on
each input in order to fire.

Fire!
Produce 1

1

1

Consume

[Lee & Matsikoudis, 2009]

Dataflow	Solution	for	Scheduling:	
Firing	Rules	

81

Fire! 1
1

1 Consume

When it fires, each
reaction is invoked in a
deterministic order.

[Lee & Matsikoudis, 2009]

An actor with inputs has to
specify at all times how
many tokens it needs on
each input in order to fire.

Synchronous	Dataflow	Scheduling	

When	the	firing	rules	and	production	
patterns	are	static	integer	constants,	
then	a	lot	of	analysis	and	
optimization	is	possible.	
	
[Lee	&	Messerschmitt,	1986]	

82

1
1

1

1

1

1
1996

Synchronous	Dataflow	Scheduling	
with	Timing	

If	execution	times	are	also	known,	then	throughput	
and	latency	bounds	are	derivable	and	optimal	
scheduling	is	possible	(albeit	intractable).	

83

1
1

1

1

1

1

Dataflow	Scheduling	with		
Dynamic	Firing	Rules	

84

What should
be the firing
rule for Foo?

1
?

1 Consume

?

1

1

reactor Baz {
 input in:bool;
 output out:bool;
 reaction(in)->out {
 if (something) {
 set(out, true);
 }
 }

}

Boolean	Dataflow	

85

Associate a symbolic variable
with production and
consumption parameters.
Solve the scheduling problem
symbolically.
[Buck and Lee, 1993]

1
b

1 Consume

b

1

1

Buck [1993] showed that
scheduling problems in
general are undecidable in
this framework.

Various	Dataflow	Variants	that	
Remain	Decidable	

86

•  Cyclostatic dataflow [Lauwereins 1994]

•  Heterochronous dataflow [Girault, Lee & Lee, 1997]

•  Parameterized dataflow [Bhattacharya & Bhattacharyya, 2001]

•  Structured dataflow [Thies, 2002]

•  Scenario-aware dataflow [Theelen, Geilen, Basten, et al. 2006]

•  Reconfigurable dataflow [Fradet, Girault, et al., 2019]

1
b

1 Consume

b

1

1

Scenario-Aware	Dataflow	

87

A state machine governs the
switching between
production/consumption
patterns and also execution
times.

[Theelen, Geilen, Basten, et al. 2006]

1
b

1 Consume

b

1

1

Towards	Deterministic	Concurrency	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	

88

A	Different	Solution:		
Blocking	Reads	

[Kahn, 1974] [Kahn and MacQueen, 1977]

In Kahn Process
Networks (KPN),
every actor is a
process that blocks
on reading inputs
until data is
available.

KPNActor Foo {
 input double:bool;
 input increment:int;
 state s:int(1);
 while(true) {
 read(double);
 s *= 2;
 x = read(increment);
 s += x;
 print(s);
 }
}

increment

double

Gilles
Kahn

Blocking	reads	have	trouble	with	
data-dependent	flow	patterns	

90

KPNActor Baz {
 input in:bool;
 output out:bool;
 while(true) {
 read(in);
 if (something) {
 send(out);
 }
 }

}

KPNActor Foo {
 input double:bool;
 input increment:int;
 state s:int(1);
 while(true) {
 read(double);
 s *= 2;
 x = read(increment);
 s += x;
 print(s);
 }
}

Solution:	Coordinated	Control	

91

KPNActor Baz {
 input in:bool;
 output out:bool;
 while(true) {
 read(in);
 if (something) {
 send(out);
 }
 }
}

KPNActor Foo {
 input double:bool;
 input increment:int;
 state s:int(1);
 while(true) {
 if (something) {
 read(double);
 }
 s *= 2;
 x = read(increment);
 s += x;
 print(s);
 }
}

Towards	Deterministic	Concurrency	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	

92

An	Alternative	Approach	to	
Coordination	

	
	
Make	the	notion	of	the	“absence”	of	a	message	
as	meaningful	as	its	presence.	

93

A	Different	Approach:	
Synchronous	Languages	

94

In the synchronous/reactive approach, there is a conceptual
global “clock,” and on each “tick” of this clock, a connection
either has a well-defined value or is “absent.”
Each actor realizes a time-varying function mapping inputs
to outputs.

[Benveniste & Berry, 1991]

Fixed	Point	Semantics	

95

s ∈ S N

At each tick of the
clock, the job of the
execution engine is
to find a valuation s
for all signals such
that F(s) = s.

This is called a fixed
point of the function
F. A theory of partial
orders guarantees
existence and
uniqueness.

[Edwards and Lee, 2003]

Distributed	and	Parallel	Execution	

Physically	asynchronous,		
logically	synchronous	(PALS)	

96
[Sha et al., 2009]

Towards	Deterministic	Concurrency	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	

97

Outline	

•  Definitions	
•  Threads	
•  Alternatives	to	Threads	
•  Actors	
•  Ports,	Hierarchy,	and	Scheduling	
•  Deterministic	Concurrency	
•  Time	
•  Discrete-Event	Languages	
•  Reactors	

98

Recall:	Desirable	Properties	in	a		
Model	of	Time	

•  A	“present”	that	separates	the	past	and	future	
–  Needed	for	a	notion	of	“state”	

•  Support	for	causality	
–  If	A	causes	B,	then	every	observer	should	see	

A	before	B.	
•  A	well-defined	“observer”	

–  Otherwise,	you	are	stuck	trying	to	solve	the	physics	
problem.	

•  A	notion	of	“simultaneity”	
	
All	are	problematic	in	physics	but	useful	in	models.	

99 Lee, Berkeley

Models	in	Time	

Assume	that	“time”	is	about	how	a	model	changes.	
	
Change	may	be:	
1.  Discrete:	indivisible,	atomic,	an	event.	
2.  Continuous:	flow,	motion	

100 Lee, Berkeley

Representing	Time	

When	realized	in	a	software-based	model:	
1.  The	precision	of	time	should	be	finite	and	the	same	

for	all	observers.	
2.  The	precision	of	time	should	be	independent	of	the	

absolute	magnitude	of	the	time.		
3.  Addition	of	time	should	be	associative.	That	is,	for	

any	three	time	intervals	t1,	t2,	and	t3,	
(t1	+	t2)	+	t3	=	t1	+	(t2	+	t3)	

		

101 Lee, Berkeley

[1] Broman, et al. “Requirements for hybrid cosimulation standards. HSCC 2015.
[2] Cremona, et al., “Hybrid co-simulation: it's about time,” Software and Systems Modeling 2017.

Representing	Time	

When	realized	in	a	software-based	model:	
1.  The	precision	of	time	should	be	finite	and	the	same	

for	all	observers.	
2.  The	precision	of	time	should	be	independent	of	the	

absolute	magnitude	of	the	time.		
3.  Addition	of	time	should	be	associative.	That	is,	for	

any	three	time	intervals	t1,	t2,	and	t3,	
(t1	+	t2)	+	t3	=	t1	+	(t2	+	t3)	

	

Floating	point	numbers	do	not	satisfy	these	properties.	

102 Lee, Berkeley

[1] Broman, et al. “Requirements for hybrid cosimulation standards. HSCC 2015.
[2] Cremona, et al., “Hybrid co-simulation: it's about time,” Software and Systems Modeling 2017.

Representing	Time	

•  “Continuum”	does	not	imply	“continuous.	

103 Lee, Berkeley

v1
v2

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Velocities

time

Models	Without	Simultaneity	

•  Sometimes	called	“interleaving	semantics”	
•  Simultaneity	è	nondeterministic	ordering	
•  Newtonian	physics	no	longer	works	
•  Models	are	quickly	intractable	

104 Lee, Berkeley

Models	With	Simultaneity	

Event	A	is	simultaneous	with	event	B	if	no	
observer	can	see	that	one	event	occurred	and	
the	other	did	not.	
	
This	requires	a	well-defined	notion	of	an	
“observer.”	
	

105 Lee, Berkeley

Pitfall	With	Simultaneity	

If	two	events	are	not	simultaneous,	does	
time	pass	between	their	occurrences?	

106 Lee, Berkeley

What	is	the	momentum	of	the	middle	ball	as	a	function	of	time?	

	 p(t) = mv(t)

What	is	the	momentum	of	the	middle	ball	as	a	function	of	time?	

	
It	might	seem:	

p(t) = mv(t)

v(t) = 0) p(t) = 0

But	no,	it	is:	
	
	
where	ti	is	the	time	of	collision	

v(t) =
⇢

K, t = ti
0 otherwise

Since	position	is	the	
integral	of	velocity,	and	the	
integral	of	v	is	zero,	the	ball	
does	not	move.	

v(t) =
⇢

K, t = ti
0 otherwise

K

ti

v(t) =
⇢

K, t = ti
0 otherwise

A	discrete	representation	
of	this	signal	with	samples	
is	inadequate.	

K

ti

Samples yield discrete signals

A signal is sampled at tags

t t0 t1 t2 t3 ts ...

A signal s is discrete if there is an order
embedding from its tag set π (s) (the tags for
which it is defined and not absent) to the natural
numbers (under their usual order).

π (s) = {t0, t1,...}⊂ T
s :T→D

v(t) =
⇢

K, t = ti
0 otherwise

No	discrete	subset	of	real-
valued	times	is	adequate	to	
unambiguously	represent	
this	signal.	

K

ti

v(t) =
⇢

K, t = ti
0 otherwise

There	is	no	semantic	
distinction	between	a	discrete	
event	and	a	rapidly	varying	
continuous	signal.	

K

ti

115

Superdense Time

At each tag, the signal has exactly one value.
At each time point, the signal has a sequence of values.

v : (R⇥N)! R3

v(ti,0) = 0Initial value:

Intermediate value:

Final value:

v(ti,1) = K

v(ti,n) = 0, n � 2

[Lee, “CPS Foundations,” DAC, 2010]
[Maler, Manna, Pnuelli, 92]

v : R ! R3
<latexit sha1_base64="DAkU8ClunhDKXH5S+qOyoFUOJrA=">AAACFnicbVC7TsMwFHXKq5RXgJHFokJioUoACcYKFsaC6ENqSuW4TmvVcSL7pqKK+hUs/AoLAwixIjb+BqftUFqOZOn43Hvte44fC67BcX6s3NLyyupafr2wsbm1vWPv7tV0lCjKqjQSkWr4RDPBJasCB8EasWIk9AWr+/3rrF4fMKV5JO9hGLNWSLqSB5wSMFLbPvGAPYIfpIORl70msRcS6Pl+ejfCHkQz14ezQtsuOiVnDLxI3Ckpoikqbfvb60Q0CZkEKojWTdeJoZUSBZwKNip4iWYxoX3SZU1DJQmZbqVjWyN8ZJQODiJljgQ8VmcnUhJqPQx905ktqedrmfhfrZlAcNlKuYwTYJJOPgoSgY3dLCPc4YpREENDCFXc7IppjyhCwSSZheDOW14ktdOSa/jtebF8NY0jjw7QITpGLrpAZXSDKqiKKHpCL+gNvVvP1qv1YX1OWnPWdGYf/YH19QulnJ+d</latexit><latexit sha1_base64="DAkU8ClunhDKXH5S+qOyoFUOJrA=">AAACFnicbVC7TsMwFHXKq5RXgJHFokJioUoACcYKFsaC6ENqSuW4TmvVcSL7pqKK+hUs/AoLAwixIjb+BqftUFqOZOn43Hvte44fC67BcX6s3NLyyupafr2wsbm1vWPv7tV0lCjKqjQSkWr4RDPBJasCB8EasWIk9AWr+/3rrF4fMKV5JO9hGLNWSLqSB5wSMFLbPvGAPYIfpIORl70msRcS6Pl+ejfCHkQz14ezQtsuOiVnDLxI3Ckpoikqbfvb60Q0CZkEKojWTdeJoZUSBZwKNip4iWYxoX3SZU1DJQmZbqVjWyN8ZJQODiJljgQ8VmcnUhJqPQx905ktqedrmfhfrZlAcNlKuYwTYJJOPgoSgY3dLCPc4YpREENDCFXc7IppjyhCwSSZheDOW14ktdOSa/jtebF8NY0jjw7QITpGLrpAZXSDKqiKKHpCL+gNvVvP1qv1YX1OWnPWdGYf/YH19QulnJ+d</latexit><latexit sha1_base64="DAkU8ClunhDKXH5S+qOyoFUOJrA=">AAACFnicbVC7TsMwFHXKq5RXgJHFokJioUoACcYKFsaC6ENqSuW4TmvVcSL7pqKK+hUs/AoLAwixIjb+BqftUFqOZOn43Hvte44fC67BcX6s3NLyyupafr2wsbm1vWPv7tV0lCjKqjQSkWr4RDPBJasCB8EasWIk9AWr+/3rrF4fMKV5JO9hGLNWSLqSB5wSMFLbPvGAPYIfpIORl70msRcS6Pl+ejfCHkQz14ezQtsuOiVnDLxI3Ckpoikqbfvb60Q0CZkEKojWTdeJoZUSBZwKNip4iWYxoX3SZU1DJQmZbqVjWyN8ZJQODiJljgQ8VmcnUhJqPQx905ktqedrmfhfrZlAcNlKuYwTYJJOPgoSgY3dLCPc4YpREENDCFXc7IppjyhCwSSZheDOW14ktdOSa/jtebF8NY0jjw7QITpGLrpAZXSDKqiKKHpCL+gNvVvP1qv1YX1OWnPWdGYf/YH19QulnJ+d</latexit>

[Lee & Zheng, 2005]

 116

Superdense Time

The red arrows indicate value changes between tags, which correspond
to discontinuities. Signals are continuous from the left and continuous
from the right at points of discontinuity.

Superdense	Time	in	Ptolemy	II	

[1]	Cardoso,	et	al.,	“Continuous-Time	Models,”	in	System	Design,	Modeling,	and	
Simulation	using	Ptolemy	II,	Claudius	Ptolemaeus	(ed.),	ptolemy.org,	2014.	
	

117 Lee, Berkeley

-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

0.0 0.5 1.0 1.5 2.0

Piecewise Continuous Signal

time

Samples from numerical ODE solver. Sequence of untimed events.

Outline	

•  Definitions	
•  Threads	
•  Alternatives	to	Threads	
•  Actors	
•  Ports,	Hierarchy,	and	Scheduling	
•  Deterministic	Concurrency	
•  Time	
•  Discrete-Event	Languages	
•  Reactors	

118

Discrete-Event	Languages	

DE	is	a	generalization	of	SR,	where	there	is	a	
notion	of	“time	between	ticks.”	
	
WARNING:	immediately	have	(at	least)	two	time	
lines:	logical	time	and	physical	time(s).	

119 [Lee & Zheng, 2007]

Recall:	Asynchronous	Atomic	
Callbacks:	Periodic	Actions	

•  Shared	variable	x	
•  Timed	actions	on	x	

•  +1	every	second	
•  −2	every	two	seconds	
•  Observe	every	4	seconds	

120

On Node.js v5.3.0, MacOS Sierra:

0, 0, 0, 0, 0, −1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

Our	Contribution:	Logical	Clocks		

•  Shared	variable	x	
•  Timed	actions	on	x	

•  +1	every	second	
•  −2	every	two	seconds	
•  Observe	every	4	seconds	

121

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

On Node.js v5.3.0, MacOS Sierra:

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …

Make Times logical not physical.

Solomon Wolf Golomb

You will never strike oil by
drilling through the map!

Lee, Berkeley 122

Do not confuse the map
with the territory!	

But this does not in any way
diminish the value of a map!

Atomic	Execution	#1	

At	initialization,	this	
executes	atomically	and	
the	time	origin	TA	for	
logical	clock	domain	‘A’	is	
set	to	the	current	
measurement	of	physical	
time.	

123

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

x = 0

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

Atomic	Execution	#2	

At	time	approximately	
TA	+	1000ms,	
increment	x	by	1.	

124

x = 1

		x	=	x	+	1;	

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

Atomic	Execution	#3	

At	time	approximately	
TA	+	2000ms,	
increment	x	by	1,	then	
decrement	x	by	2,	
atomically.	

125

x = 0

		x	=	x	+	1;	

		x	=	x	-	2;	

Atomic	Execution	#4	

At	time	approximately	
TA	+	3000ms,	
increment	x	by	1.	

126

x = 1

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

		x	=	x	+	1;	

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

		x	=	x	+	1;	

Atomic	Execution	#5	

At	time	approximately	
TA	+	4000ms,	
increment	x	by	1,	then	
decrement	x	by	2,	then	
print	the	value	of	x,	
atomically.	

127

x = 0

		x	=	x	-	2;	

		console.log(x);	

A	Semantic	Notion	of	Simultaneity	

Event	A	is	simultaneous	with	event	B	if	no	
observer	can	see	that	one	event	occurred	and	
the	other	did	not.	
	
This	requires	a	well-defined	notion	of	an	
“observer.”	
	

128 Lee, Berkeley

Code	is	Testable!	

129

Outline	

•  Definitions	
•  Threads	
•  Alternatives	to	Threads	
•  Actors	
•  Ports,	Hierarchy,	and	Scheduling	
•  Deterministic	Concurrency	
•  Time	
•  Discrete-Event	Languages	
•  Reactors	

130

Finally!	We	can	talk	about	the	
motivating	example.	

131

Sporadic events are
assigned a time stamp
based on the local
physical-time clock

Computations have
logically zero delay.

Every reactor handles
events in time-stamp
order. If time-stamps
are equal, events are
“simultaneous”

Actuators can have a
deadline D. An input with
time stamp t is required to
be delivered to the
actuator before the local
clock hits t + D.

Deadline
D

Deadline
D

Simple,	Single-Machine	Realization	

132

•  Sort reactions topologically based on precedences.
•  Global notion of “current logical time” t.
•  Event queue containing future events.
•  Choose earliest time stamp t’ on the queue.
•  Wait for the physical time clock to match t’.
•  Execute reactors in topological sort order.

When a sporadic sensor triggers (or
an asynchronous event like a
network message arrives), assign a
time stamp based on the local
physical-time clock.

Temporal	Operators	
(Logical	Time)	

133

This example has a pre-defined latency from
physical sensing to physical actuation, thereby
delivering a closed-loop deterministic cyber-
physical model.

D = 0.1

D = 0.2

Real-Time	Systems	

134

Classical real-time systems scheduling and
execution-time analysis determines whether the
specification can be met.

[Buttazzo, 2005] [Wilhelm et al., 2008]

D = 0.1

D = 0.2

Iron-Clad	Guarantees	with	
PRET	Machines	

135

Precision-timed (PRET) machines deliver
deterministic clock-cycle-level repeatable timing
with no loss of performance on sporadic workloads.

[Edwards & Lee, 2007] [Lee et al., 2017]

D = 0.1

D = 0.2

Opportunity	for	Optimization	

136

If the PeriodicSource does not depend on physical
inputs, then pre-computing (logical time ahead of
physical time) becomes possible, based on
dependence analysis.

D = 0.1

D = 0.2

Networked	Scheduling:	PTides	

137

When is this “safe to process”? [Zhao et al., 2007]

T

WCET
W1

[Edison et al., 2012]

[Corbett et al., 2012] When τ ≥ T + W1 + E + N, where
•  τ is the local physical clock time
•  W1 is worst-case execution time
•  E is the bound on the clock synchronization error
•  N the bound on the network delay

D = 0.1

D = 0.2

Networked	Scheduling:	PTides	

138

Will the deadline at ActuatorA be met? [Zhao et al., 2007]

T

WCET
W1

[Edison et al., 2012]

[Corbett et al., 2012] Yes if D + d1 ≥ T + W1 + E + N + W2

WCET
W2 D = 0.1

D = 0.2

Decoupling	Real-Time	Analysis	with	
Networked	Scheduling	

139

Imposing deadlines on network interfaces
decouples the real-time analysis problem. Each
execution platform can be individually verified for
meeting deadlines.
E.g., I2 ≥ W2 , D2 ≥ W2 , D3 ≥ D2 + W3 , …

[Zhao et al., 2007]

WCET
W2

WCET
W1

WCET
W3

Interval
I2

Other	Issues:	Feedback	

•  Fixed-point	semantics	
•  Causality	loops	
•  Superdense	time	
•  …	

140

Projects	at	Berkeley	Focused	on	
Engineering	Models	for	CPS	

Deterministic	models	for	CPS:	
	

•  PTIDES:	distributed	real-time	software	
–  http://chess.eecs.berkeley.edu/ptides	

•  PRET:	time-deterministic	architectures	
–  http://chess.eecs.berkeley.edu/pret		

•  Lingua	Franca:	a	programming	model	
–  https://github.com/icyphy/lingua-franca		

Lee, Berkeley 141

Together, these
technologies give
a model for
distributed and
concurrent real-
time systems that
is deterministic,
has controlled
timing, and is
implementable.

Model-Based	Design	of		
Cyber-Physical	Systems	

Changing	the	Question:	
	
Is	the	question	whether	we	can	build	models	
describing	the	behavior	of	cyber-physical	systems?	
	

	Or	
	
Is	the	question	whether	we	can	make	cyber-physical	
systems	that	behave	like	our	models?	

142

