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What	is	a	Model?	
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A	model	is	any	description	of	a	system	that	is	
not	the	“thing-in-itself.”	
(das	Ding	an	sich		in	Kantian	philosophy). 



  

Model	of	Computation	

US	NIST:	
•  A	formal,	abstract	definition	of	a	computer.	
	
Wikipedia	(on	1/18/20):	
•  a	model	which	describes	how	an	output	of	a	
mathematical	function	is	computed	given	an	
input.	

5 



  

Example	MoCs	

Sequential:	
•  Finite	state	machines	
•  Pushdown	automata	
•  Turing	machines	
	
Functional:	
•  Lambda	calculus	
•  Recursive	functions	
•  Combinatory	logic	
•  Rewriting	systems	
	
	
	

Concurrent:	
•  Cellular	automata	
•  Kahn	process	networks	
•  Petri	nets	
•  Dataflow	
•  Actors	
•  CSP	(rendezvous)	

Timed	&	Concurrent:	
•  Synchronous/Reactive	
•  Discrete	events	
•  Continuous	time	

6 



  

Concurrent	MoCs	

7 

http://ptolemy.org/systems 

“the rules that govern 
concurrent execution of 
the components and 
the communication 
between components” 



  

Concurrency 

From the Latin, 
concurrere,  
“run together” 



  

Concurrency	

Google:	
•  the	fact	of	two	or	more	events	or	circumstances	
happening	or	existing	at	the	same	time.	

Dictionary.com:	
•  simultaneous	occurrence;	coincidence.	

Webster:	
•  the	simultaneous	occurrence	of	events	or	
circumstances	

9 



  

Points of Confusion 

•  The role of time 
•  Synchrony and asynchrony 
•  Concurrent vs. parallel 
•  Concurrent vs. nondeterministic 



  

Layers of Abstraction for  
Concurrency in Programs 



  

Uses of Concurrency in Software 

u  Reacting to external events (interrupts) 

u  Exception handling (software interrupts) 

u  Creating the illusion of simultaneously running 
different programs (multitasking) 

u  Exploiting parallelism in the hardware (multicore, 
VLIW, server farms) 

u  Dealing with real-time constraints (preemption, 
deadlines, priorities) 

u  Distributed computation (networked) 
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Threads 

Threads are sequential concurrent procedures that 
share memory. 
 
They have been the most commonly used 
mechanism for building concurrent software, but this 
is changing, for good reasons. 
 
Processes are collections of threads with their own 
memory. Communication between processes occurs 
via OS facilities (like pipes, sockets, or files). 



  

Thread Mechanisms 

u  Without an OS, multithreading is achieved with interrupts. 
Timing is determined by external events. 

u  Generic OSs (Linux, Windows, OSX, …) provide thread 
libraries (e.g. pthreads) and provide no guarantees about 
when threads will execute. 

u  Real-time operating systems  (RTOSs), like FreeRTOS, 
QNX, VxWorks, RTLinux, support a variety of ways of 
controlling when threads execute (priorities, preemption 
policies, deadlines, …). 



  

Posix Threads (pthreads) 

pthreads is an API (Application Program Interface) 
implemented by many operating systems, both real-
time and not. It is a library of C procedures. 

Standardized by the IEEE in 1988 to unify variants of 
Unix. Subsequently implemented in most other 
operating systems. 

Some languages have threads built in, like Java, 
which uses pthreads under the hood. 



  

Creating and Destroying 
Threads 

#include <pthread.h> 
 

void* threadFunction(void* arg) { 
    ... 

    return pointerToSomething or NULL; 

} 

 

int main(void) { 

    pthread_t threadID; 
    void* exitStatus; 

    int value = something; 

    pthread_create(&threadID, NULL, threadFunction, &value); 
    ... 

    pthread_join(threadID, &exitStatus); 

    return 0; 

} 

Can pass in pointers to shared variables. 

Can return pointer to something. 
Do not return a pointer to an local variable! 

Return only after all threads have terminated. 

Becomes arg parameter to 
threadFunction.  
Why is it OK that this is a 
local variable? 

Create a thread (may or may not start running!) 



  

What’s Wrong with This? 
#include <pthread.h> 
#include <stdio.h> 

void *my_thread() { 

 int ret = 42; 

 return &ret; 

} 

 

int main() { 

 pthread_t task_id; 
 void *status; 

 pthread_create(&task_id, NULL, my_thread, NULL); 

 pthread_join(task_id, &status); 

 printf("%d\n",*(int*)status); return 0; 

} 

Don’t return a pointer to a local 
variable, which is on the stack.  



  

Notes 
u  Threads can (and often do) share variables 
u  Threads may or may not begin running immediately 

after being created. 
u  A thread may be suspended between any two 

atomic instructions (typically, assembly instructions, 
not C statements!) to execute another thread and/or 
interrupt service routine. 

u  Threads can often be given priorities, but these may 
not be respected by the thread scheduler. 

u  Threads may block on semaphores and mutexes. 



  

A	Scenario	
Under	Integrated	Modular	Avionics,	software	
in	the	aircraft	engine	continually	runs	
diagnostics	and	publishes	diagnostic	data	on	
the	local	network.	

Proper software 
engineering practice 
suggests using the 
observer pattern. 

An observer 
process updates 
the cockpit display 
based on 
notifications from 
the engine 
diagnostics. 



  

Typical thread programming 
problem 

“The Observer pattern defines a one-to-many 
dependency between a subject object and any 
number of observer objects so that when the 
subject object changes state, all its observer 
objects are notified and updated  
automatically.”  

Design Patterns, Eric Gamma, Richard Helm,  
Ralph Johnson, John Vlissides 
(Addison-Wesley, 1995) 



  

Observer Pattern in C 
// Value that when updated triggers notification 
// of registered listeners. 
int value; 
 
// List of listeners. A linked list containing  
// pointers to notify procedures. 
typedef void* notifyProcedure(int); 
struct element {…} 
typedef struct element elementType; 
elementType* head = 0; 
elementType* tail = 0; 
 
// Procedure to add a listener to the list. 
void addListener(notifyProcedure listener) {…} 
 
// Procedure to update the value 
void update(int newValue) {…} 
 
// Procedure to call when notifying 
void print(int newValue) {…} 



  

// Value that when updated triggers notification of registered listeners. 
int value; 
 
// List of listeners. A linked list containing  
// pointers to notify procedures. 
typedef void* notifyProcedure(int); 
struct element {…} 
typedef struct element elementType; 
elementType* head = 0; 
elementType* tail = 0; 
 
// Procedure to add a listener to the list. 
void addListener(notifyProcedure listener) {…} 
 
// Procedure to update the value 
void update(int newValue) {…} 
 
// Procedure to call when notifying 
void print(int newValue) {…} 

Observer Pattern in C 

typedef void* notifyProcedure(int); 
struct element { 
  notifyProcedure* listener; 
  struct element* next; 
}; 
typedef struct element elementType; 
elementType* head = 0; 
elementType* tail = 0; 



  

Observer Pattern in C 
// Value that when updated triggers notification of registered listeners. 
int value; 
 
// List of listeners. A linked list containing  
// pointers to notify procedures. 
typedef void* notifyProcedure(int); 
struct element {…} 
typedef struct element elementType; 
elementType* head = 0; 
elementType* tail = 0; 
 
// Procedure to add a listener to the list. 
void addListener(notifyProcedure listener) {…} 
 
// Procedure to update the value 
void update(int newValue) {…} 
 
// Procedure to call when notifying 
void print(int newValue) {…} 

// Procedure to add a listener to the list. 
void addListener(notifyProcedure listener) { 
  if (head == 0) { 
    head = malloc(sizeof(elementType)); 
    head->listener = listener; 
    head->next = 0; 
    tail = head; 
  } else { 
    tail->next = malloc(sizeof(elementType)); 
    tail = tail->next; 
    tail->listener = listener; 
    tail->next = 0; 
  } 
} 



  

// Value that when updated triggers notification of registered listeners. 
int value; 
 
// List of listeners. A linked list containing  
// pointers to notify procedures. 
typedef void* notifyProcedure(int); 
struct element {…} 
typedef struct element elementType; 
elementType* head = 0; 
elementType* tail = 0; 
 
// Procedure to add a listener to the list. 
void addListener(notifyProcedure listener) {…} 
 
// Procedure to update the value 
void update(int newValue) {…} 
 
// Procedure to call when notifying 
void print(int newValue) {…} 

Observer Pattern in C 

// Procedure to update the value 
void update(int newValue) { 
  value = newValue; 
  // Notify listeners. 
  elementType* element = head; 
  while (element != 0) { 
    (*(element->listener))(newValue); 
    element = element->next; 
  } 
} 



  

// Value that when updated triggers notification of registered listeners. 
int value; 
 
// List of listeners. A linked list containing  
// pointers to notify procedures. 
typedef void* notifyProcedure(int); 
struct element {…} 
typedef struct element elementType; 
elementType* head = 0; 
elementType* tail = 0; 
 
// Procedure to add a listener to the list. 
void addListener(notifyProcedure listener) {…} 
 
// Procedure to update the value 
void update(int newValue) {…} 
 
// Procedure to call when notifying 
void print(int newValue) {…} 

Observer Pattern in C 

Will this work in a 
multithreaded context? 
 
Will there be 
unexpected/undesirable 
behaviors? 



  

Observer Pattern in C: 
How to make this thread safe? 

// Value that when updated triggers notification of registered listeners. 
int value; 
 
// List of listeners. A linked list containing  
// pointers to notify procedures. 
typedef void* notifyProcedure(int); 
struct element {…} 
typedef struct element elementType; 
elementType* head = 0; 
elementType* tail = 0; 
 
// Procedure to add a listener to the list. 
void addListener(notifyProcedure listener) {…} 
 
// Procedure to update the value 
void update(int newValue) {…} 
 
// Procedure to call when notifying 
void print(int newValue) {…} 

// Procedure to add a listener to the list. 
void addListener(notifyProcedure listener) { 
  if (head == 0) { 
    head = malloc(sizeof(elementType)); 
    head->listener = listener; 
    head->next = 0; 
    tail = head; 
  } else { 
    tail->next = malloc(sizeof(elementType)); 
    tail = tail->next; 
    tail->listener = listener; 
    tail->next = 0; 
  } 
} 



  

Using Posix mutexes on 
the observer pattern in C 

#include <pthread.h> 
... 
pthread_mutex_t lock; 
 
void addListener(notify listener) { 
  pthread_mutex_lock(&lock); 
  ... 
  pthread_mutex_unlock(&lock); 
} 
 
void update(int newValue) { 
  pthread_mutex_lock(&lock); 
  value = newValue; 
  elementType* element = head; 
  while (element != 0) { 
    (*(element->listener))(newValue); 
    element = element->next; 
  } 
  pthread_mutex_unlock(&lock); 
} 
 
int main(void) { 
  pthread_mutex_init(&lock, NULL); 
  ... 
} 

However, this carries a 
significant deadlock risk. 
The update procedure 
holds the lock while it 
calls the notify 
procedures. If any of 
those stalls trying to 
acquire another lock, and 
the thread holding that 
lock tries to acquire this 
lock, deadlock results. 



  

After years of use without problems, a Ptolemy Project code review found 
code that was not thread safe. It was fixed in this way. Three days later, a 
user in Germany reported a deadlock that had not shown up in the test suite. 



  

One possible “fix” #include <pthread.h> 
... 
pthread_mutex_t lock; 
 
void addListener(notify listener) { 
  pthread_mutex_lock(&lock); 
  ... 
  pthread_mutex_unlock(&lock); 
} 
 
void update(int newValue) { 
  pthread_mutex_lock(&lock); 
  value = newValue; 
  ... copy the list of listeners ... 
  pthread_mutex_unlock(&lock); 
  elementType* element = headCopy; 
  while (element != 0) { 
    (*(element->listener))(newValue); 
    element = element->next; 
  } 
} 
 
int main(void) { 
  pthread_mutex_init(&lock, NULL); 
  ... 
} 

What is wrong with this? 
 
Notice that if multiple 
threads call update(), the 
updates will occur in 
some order. But there is 
no assurance that the 
listeners will be notified in 
the same order. Listeners 
may be mislead about the 
“final” value. 



  

This is a very simple, commonly used design 
pattern. Perhaps Concurrency is Just Hard… 

Sutter and Larus observe: 
 
“Humans are quickly overwhelmed by concurrency and 
find it much more difficult to reason about concurrent 
than sequential code. Even careful people miss possible 
interleavings among even simple collections of partially 
ordered operations.” 

H. Sutter and J. Larus. Software and the concurrency revolution. 
ACM Queue, 3(7), 2005. 



  

If concurrency were intrinsically hard, we would 
not function well in the physical world 

It is not 
concurrency that 
is hard… 



  

…It is Threads that are Hard! 

Threads are sequential processes that share 
memory. From the perspective of any thread, 
the entire state of the universe can change 
between any two atomic actions (itself an ill-
defined concept). 

Imagine if the physical world did that… 



  

What	it	Feels	Like	to	Use	Mutexes	
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Claim	

	
Nontrivial	software	written	with	threads,	
semaphores,	and	mutexes	is	incomprehensible	to	
humans.	
	
à  Need	better	ways	to	program	concurrent	systems	

	
à  Better	tools	to	analyze	and	reason	about	concurrency	

(e.g.	model	checking)	



  

Do	Threads	Have	a	Sound	
Foundation?	

If	the	foundation	is	bad,	
then	we	either	tolerate	
brittle	designs	that	are	
difficult	to	make	work,	
or	we	have	to	rebuild	
from	the	foundations.	

Note that this whole thing  
is held up by threads 



  

Problems with the Foundations 

A model of computation: 

•   Bits: B = {0, 1} 
•   Set of finite sequences of bits: B* 
•   Computation: f : B*→ B*

•   Composition of computations: f • f ' 
•   Programs specify compositions of computations 

Threads augment this model to admit concurrency. 

But this model does not admit concurrency gracefully. 



  

Basic Sequential Computation 

initial state: b0 ∈ B*   

final state: bN  

sequential 
composition 

bn = fn ( bn-1 ) 

Formally, composition of computations is function composition. 



  

When There are Threads, 
Everything Changes 

suspend 

A program no longer 
computes a function. 

resume 

another thread can 
change the state 

bn = fn ( bn-1 ) 

b'n = fn ( b'n-1 ) 

Apparently, programmers find this 
model appealing because nothing has 
changed in the syntax. 



  

Succinct Problem Statement 

Threads are wildly nondeterministic. 

The programmer’s job is to prune away the 
nondeterminism by imposing constraints on 
execution order (e.g., mutexes) and limiting 
shared data accesses (e.g., OO design). 



  

Incremental Improvements to Threads 

•  Object Oriented programming  
•  Coding rules (Acquire locks in the same order…) 
•  Libraries (Stapl, Java concurrent collections, …) 
•  Message passing (Actors, …) 
•  Publish and subscribe (ROS, MQTT, DDS, …) 
•  Transactions (Databases, …) 
•  Patterns (MapReduce, …) 
•  Formal verification (Model checking, …) 
•  Enhanced languages (Split-C, Cilk, Guava, …) 
•  Enhanced mechanisms (Promises, futures, 

asynchronous atomic callbacks …) 



  

Threads:	An	Unnecessary	Source	of	
Nondeterminism	in	Software	

Threads	are	slowly	getting	replaced.	
E.g.:	
•  Asynchronous	atomic	callbacks	

–  Python,	Node.js,	Vert.x,		…	
•  Actors	

–  Akka,	Orleans,	Ray,	…		
•  Pub-Sub	

–  ROS,	Vert.x,	DDS,	…	
•  …	

42 Lee, Berkeley 

2006 



  

Message-passing	programs	may	be	better	

But there is still risk of 
deadlock and 
unexpected 
nondeterminism! 



  

Recall	Challenge	Problem	

A	software	
component	on	a	
microprocessor	in	an	
aircraft	door	provides	
two	network	services:	
1.  “open”	
2.  “disarm”	
Assume	state	is	
closed	and	armed.	
What	should	it	do	
when	it	receives	a	
request	“open”?	

44 

Image by Christopher Doyle from 
Horley, United Kingdom - A321 Exit 
Door, CC BY-SA 2.0 



  

Recall	Challenge	Problem	

A	software	
component	on	a	
microprocessor	in	an	
aircraft	door	provides	
two	network	services:	
1.  “open”	
2.  “disarm”	
Assume	state	is	
closed	and	armed.	
What	should	it	do	
when	it	receives	a	
request	“open”?	

45 Image from The Telegraph, Sept. 9, 2015 



  

Outline	

•  Definitions	
•  Threads	
•  Alternatives	to	Threads	
•  Actors	
•  Ports,	Hierarchy,	and	Scheduling	
•  Deterministic	Concurrency	
•  Time	
•  Discrete-Event	Languages	
•  Reactors	

46 



  

Asynchronous	Atomic	Callbacks	

•  Main	event	loop.	
•  Event	handlers	(“callbacks”)	run	to	
completion	atomically.	

Augment	with	worker	threads	that	
communicate	with:	
•  Immutable	data	
•  Publish-and-subscribe	busses	

47 



  

Asynchronous	Atomic	Callbacks:	
Periodic	Actions	

•  Shared	variable	x	
•  Timed	actions	on	x	

•  +1	every	second	
•  −2	every	two	seconds	
•  Observe	every	4	seconds	

48 

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

On Node.js v5.3.0, MacOS Sierra: 
 
0, 0, 0, 0, 0, −1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …



  

“Toyota”	Style	of	Design	

NASA's	Toyota	Study	Released	by	Dept.	of	
Transportation	released	in	2011	found	that	
Toyota	software	was	“untestable.”	

49 

Possible 
victim of 

unintended 
acceleration. 



  

Publish	and	Subscribe	(Pub	Sub)	

50 

Broker Publisher 

Subscriber 

Subscriber 

Subscriber 
Publish to 
Topic: Temperature 
Data: 18 Data: 18 Data: 18 Data: 18 

Subscribe to Topic: 
Temperature 

Etc. 



  

Recall	Challenge	Problem	

A	software	
component	on	a	
microprocessor	in	an	
aircraft	door	provides	
two	network	services:	
1.  “open”	
2.  “disarm”	
Assume	state	is	
closed	and	armed.	
What	should	it	do	
when	it	receives	a	
request	“open”?	
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Horley, United Kingdom - A321 Exit 
Door, CC BY-SA 2.0 



  

Recall	Challenge	Problem	

A	software	
component	on	a	
microprocessor	in	an	
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1.  “open”	
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Assume	state	is	
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request	“open”?	

52 Image from The Telegraph, Sept. 9, 2015 



  

Another	Answer	to	Threads:	
Actors	

Actors	are	concurrent	objects	that	communicate	
by	sending	each	other	messages.	
	
•  Erlang	[Armstrong,	et	al.	1996]	

•  Rebeca	[Sirjani	and	Jaghoori,	2011]	
•  Akka	[Roestenburg,	et	al.	2017]	
•  Ray	[Moritz,	et	al.	2018]	
•  …	

53 Lee, Berkeley 



  

Cyber	Physical	Systems	Demand	
More	

54 

Predictability requires determinacy and depends on 
timing, including execution times and network delays. 



  

Motivation:		
Some	Questions	of	Interest	

55 

What combinations of 
periodic, sporadic, arrival 
curve behaviors are 
manageable? 

How do execution times 
affect feasibility? How can 
we know execution times? 

How do we get 
repeatable and 
testable behavior even 
when communication is 
across networks? 

How do we specify, 
ensure, and enforce 
deadlines? 
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Actors,	Loosely	

	
	
Actors	are	concurrent	objects	that	communicate	
by	sending	each	other	messages.	

57 



  

Hewitt/Agha	Actors	

Data	+	Message	Handlers	

58 

Private Data 

Message Queue Messages In Messages Out 

Handler B 

Handler A 

X 

X.A(args) 

X.B(args) 

X.A(args) 

Y.C(args) 

Y.D(args) 

[Hewitt, 1977] [Agha, 1986, 1990, 1997] 



  

Example	

59 

An	actor	with	simple	operations	on	its	state:	

Actor Foo { 
 int state = 1; 
 handler double(){ 
  state *= 2; 
 } 
 handler increment(arg){ 
  state += arg; 
  print state; 
 } 

} 



  

Example	

60 

An	actor	that	uses	actor	Foo:	
	
	
	
	
	
	
Semantics	is	“send	and	forget.”	

Actor Bar { 
 handler main(){ 
  Foo x = new Foo(); 
  x.double(); 
  x.increment(1); 
 } 

} 



  

Composition	

61 

What is printed? 

Actor Bar { 
 handler main(){ 
  Foo x = new Foo(); 
  x.double(); 
  x.increment(1); 
 } 

} 

Actor Foo { 
 int state = 1; 
 handler double(){ 
  state *= 2; 
 } 
 handler increment(arg){ 
  state += arg; 
  print state; 
 } 

} 



  

Pass-Through	Actor	

62 

Baz:	Given	an	actor	of	type	Foo,	send	it	“double”:	

Actor Baz { 
 handler pass(Foo x){ 
  x.double(); 
 } 

} 



  

New	Composition	

63 

What is printed? Actor Bar { 
 handler main(){ 
  Foo x = new Foo(); 
  Baz z = new Baz(); 
  z.pass(x); 
  x.increment(1); 
 } 

} 

Actor Foo { 
 int state = 1; 
 handler double(){ 
  state *= 2; 
 } 
 handler increment(arg){ 
  state += arg; 
  print state; 
 } 

} 

Actor Baz { 
 handler pass(Foo x){ 
  x.double(); 
 } 

} 



  

Hewitt/Agha	Actors	are		
Not	Predictable	

Messages	are	handled	in	nondeterministic	order.	

64 

Private Data 

Message Queue Messages In Messages Out 

Handler B 

Handler A 

X 



  

Aside:	Innovation	in	Ray		

65 

Messages	can	return	“futures”:	
	
	
	
	
	
	
Semantics	is	still	“send	and	forget,”	but	later	
remember.	

Actor Bar { 
 handler main(){ 
  Foo x = new Foo(); 
  Future a = x.double(); 
  Future b = x.increment(1); 
  print a.get() + b.get(); 
 } 

} 

[Moritz, et al. 2017] 



  

Unexpected	Nondeterminism	
Example	from	Ray	

The	Relay	actor	is	the	actor	version	of	a	“no	op,”	
but	it	makes	the	program	nondeterministic.	

66 Lee, Berkeley 

future

future

remote

remote

remote

future
double

x = X.remote();
relay = Relay.remote();
first = relay.double.remote(incrementor);
second = x.increment.remote();
return ray.get(first) + ray.get(second);

increment

x:X

relay

relay:Relay

class Relay():
    def relay(self, x):
        return x.double.remote();

class X():
    def __init__(self ):
        self.count = 0;
    def double(self ):
        self.count *= 2;
        return self.count;
    def increment(self ):
        self.count += 1;
        return self.count;

[Moritz, et al., “Ray: A Distributed Framework for Emerging AI Applications” arXiv, 2018]  



  

One	Solution:	
Analyze	and	Use	Dependencies	

67 

But how? Where is the 
dependence graph? 

Actor Bar { 
 handler main(){ 
  Foo x = new Foo(); 
  Baz z = new Baz(); 
  z.pass(x); 
  x.increment(1); 
 } 

} 

Actor Foo { 
 int state = 1; 
 handler double(){ 
  state *= 2; 
 } 
 handler increment(arg){ 
  state += arg; 
  print state; 
 } 

} 

Actor Baz { 
 handler pass(Foo x){ 
  x.double(); 
 } 

} 



  

One	Solution:	
Analyze	and	Use	Dependencies	

68 

And what if the dependence 
graph is data dependent? 

Actor Bar { 
 handler main(){ 
  Foo x = new Foo(); 
  Baz z = new Baz(); 
  z.pass(x); 
  x.increment(1); 
 } 

} 

Actor Foo { 
 int state = 1; 
 handler double(){ 
  state *= 2; 
 } 
 handler increment(arg){ 
  state += arg; 
  print state; 
 } 

} 

Actor Baz { 
 handler pass(Foo x){ 
  if (something) { 
   x.double(); 
  } 
 } 

} 
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Part	1	of	our	Solution:	
Ports	

70 

increment 

double 
reactor Bar { 
 output double:bool; 

   output increment:int; 
 reaction(startup){ 
  set(double, true); 
  set(increment, 1); 
 } 

} 

reactor Baz { 
 input in:bool; 
 output out:bool; 
 reaction(in)->out{ 
  set(out, in); 
 } 

} 

out in 

Instead of 
referring to 
other actors, 
an actor refers 
to its own 
ports. 

[Ptolemeus, 2014] 



  

Part	1	of	our	Solution:	
Ports	

71 

Input ports do 
not look much 
different from 
ordinary 
message 
handlers. 

reactor Foo { 
   input double:bool; 
   input increment:int; 
   state s:int(1); 
   reaction(double){ 
      s *= 2; 
   } 
   reaction(increment){ 
      s += increment; 
      print(s); 
   } 
} 

increment 

double 



  

Part	2	of	our	Solution:	
Hierarchy	

72 

main reactor Top { 
   x = new Foo(); 
   y = new Bar(); 
   z = new Baz(); 
   y.double -> z.in; 
   y.increment -> x.increment; 
   z.out -> x.double; 
} 



  

Part	3	of	our	Solution:	
Scheduling	

73 

main reactor Top { 
   x = new Foo(); 
   y = new Bar(); 
   z = new Baz(); 
   y.double -> z.in; 
   y.increment -> x.increment; 
   z.out -> x.double; 
} 

Scheduling becomes especially 
interesting when production or 
consumption of messages is 
data dependent. 

Ensure that Baz completes 
before Foo’s handlers are 
invoked. 
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Towards	Deterministic	Concurrency	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	
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Ptolemy	II	

76 

http://ptolemy.org 

Ptolemy II has 
implementations of all of 
these and a few more with 
extensive demos. 



  

Towards	Deterministic	Concurrency	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	
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Dataflow	

•  Computation	Graphs	[Karp,	1966]	
•  Dataflow	[Dennis,	1974]	
•  Dynamic	dataflow	[Arvind,	1981]	
•  Structured	dataflow	[Matwin	&	Pietrzykowski	1985]	
•  K-bounded	loops	[Culler,	1986]	
•  Synchronous	dataflow	[Lee	&	Messerschmitt,	1986]	
•  Structured	dataflow	and	LabVIEW	[Kodosky,	1986]	
•  PGM:	Processing	Graph	Method	[Kaplan,	1987]	
•  Dataflow	synchronous	languages	[Lustre,	Signal,	1980’s]	
•  Well-behaved	dataflow	[Gao,	1992]	
•  Boolean	dataflow	[Buck	and	Lee,	1993]	
•  Multidimensional	SDF	[Lee,	1993]	
•  Cyclo-static	dataflow	[Lauwereins,	1994]	
•  Integer	dataflow	[Buck,	1994]	
•  Bounded	dynamic	dataflow	[Lee	and	Parks,	1995]	
•  Heterochronous	dataflow	[Girault,	Lee,	&	Lee,	1997]	
•  …	

78 

Jack Dennis 



  

Dataflow	Solution	for	Scheduling:	
Firing	Rules	

79 

An actor with no inputs 
can fire at any time. 

Fire! 

Tokens produced 

[Lee & Matsikoudis, 2009] 



  

Dataflow	Solution	for	Scheduling:	
Firing	Rules	

80 

An actor with inputs has to 
specify at all times how 
many tokens it needs on 
each input in order to fire. 

Fire! 
Produce 1 

1 

1 

Consume 

[Lee & Matsikoudis, 2009] 



  

Dataflow	Solution	for	Scheduling:	
Firing	Rules	

81 

Fire! 1 
1 

1 Consume 

When it fires, each 
reaction is invoked in a 
deterministic order. 

[Lee & Matsikoudis, 2009] 

An actor with inputs has to 
specify at all times how 
many tokens it needs on 
each input in order to fire. 



  

Synchronous	Dataflow	Scheduling	

When	the	firing	rules	and	production	
patterns	are	static	integer	constants,	
then	a	lot	of	analysis	and	
optimization	is	possible.	
	
[Lee	&	Messerschmitt,	1986]	

82 

1 
1 

1 

1 

1 

1 
1996 



  

Synchronous	Dataflow	Scheduling	
with	Timing	

If	execution	times	are	also	known,	then	throughput	
and	latency	bounds	are	derivable	and	optimal	
scheduling	is	possible	(albeit	intractable).	

83 

1 
1 

1 

1 

1 

1 



  

Dataflow	Scheduling	with		
Dynamic	Firing	Rules	

84 

What should 
be the firing 
rule for Foo? 

1 
? 

1 Consume 

? 

1 

1 

reactor Baz { 
 input in:bool; 
 output out:bool; 
 reaction(in)->out { 
  if (something) { 
   set(out, true); 
  } 
 } 

} 



  

Boolean	Dataflow	

85 

Associate a symbolic variable 
with production and 
consumption parameters. 
Solve the scheduling problem 
symbolically. 
[Buck and Lee, 1993] 

1 
b 

1 Consume 

b 

1 

1 

Buck [1993] showed that 
scheduling problems in 
general are undecidable in 
this framework. 



  

Various	Dataflow	Variants	that	
Remain	Decidable	

86 

•  Cyclostatic dataflow [Lauwereins 1994] 

•  Heterochronous dataflow [Girault, Lee & Lee, 1997] 

•  Parameterized dataflow [Bhattacharya & Bhattacharyya, 2001] 

•  Structured dataflow [Thies, 2002] 

•  Scenario-aware dataflow [Theelen, Geilen, Basten, et al. 2006] 

•  Reconfigurable dataflow [Fradet, Girault, et al., 2019] 

1 
b 

1 Consume 

b 

1 

1 



  

Scenario-Aware	Dataflow	

87 

A state machine governs the 
switching between 
production/consumption 
patterns and also execution 
times. 
 
[Theelen, Geilen, Basten, et al. 2006] 

1 
b 

1 Consume 

b 

1 

1 



  

Towards	Deterministic	Concurrency	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	
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A	Different	Solution:		
Blocking	Reads	

[Kahn, 1974] [Kahn and MacQueen, 1977] 

In Kahn Process 
Networks (KPN), 
every actor is a 
process that blocks 
on reading inputs 
until data is 
available. 

KPNActor Foo { 
   input double:bool; 
   input increment:int; 
   state s:int(1); 
   while(true) { 
      read(double); 
      s *= 2; 
      x = read(increment); 
      s += x; 
      print(s); 
   } 
} 

increment 

double 

Gilles 
Kahn 



  

Blocking	reads	have	trouble	with	
data-dependent	flow	patterns	

90 

KPNActor Baz { 
 input in:bool; 
 output out:bool; 
 while(true) { 
  read(in); 
  if (something) { 
   send(out); 
  } 
 } 

} 

KPNActor Foo { 
   input double:bool; 
   input increment:int; 
   state s:int(1); 
   while(true) { 
      read(double); 
      s *= 2; 
      x = read(increment); 
      s += x; 
      print(s); 
   } 
} 



  

Solution:	Coordinated	Control	

91 

KPNActor Baz { 
   input in:bool; 
   output out:bool; 
   while(true) { 
      read(in); 
      if (something) { 
         send(out); 
      } 
   } 
} 

KPNActor Foo { 
   input double:bool; 
   input increment:int; 
   state s:int(1); 
   while(true) { 
      if (something) { 
         read(double); 
      } 
      s *= 2; 
      x = read(increment); 
      s += x; 
      print(s); 
   } 
} 



  

Towards	Deterministic	Concurrency	

•  Dataflow	(DF)	
•  Process	Networks	(PN)	
•  Synchronous/Reactive	(SR)	
•  Discrete	Events	(DE)	
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An	Alternative	Approach	to	
Coordination	

	
	
Make	the	notion	of	the	“absence”	of	a	message	
as	meaningful	as	its	presence.	

93 



  

A	Different	Approach:	
Synchronous	Languages	

94 

In the synchronous/reactive approach, there is a conceptual 
global “clock,” and on each “tick” of this clock, a connection 
either has a well-defined value or is “absent.” 
Each actor realizes a time-varying function mapping inputs 
to outputs. 

[Benveniste & Berry, 1991] 



  

Fixed	Point	Semantics	

95 

s ∈ S N 

At each tick of the 
clock, the job of the 
execution engine is 
to find a valuation s 
for all signals such 
that F(s) = s. 
 
This is called a fixed 
point of the function 
F. A theory of partial 
orders guarantees 
existence and 
uniqueness. 

[Edwards and Lee, 2003] 



  

Distributed	and	Parallel	Execution	

Physically	asynchronous,		
logically	synchronous	(PALS)	

96 
[Sha et al., 2009] 



  

Towards	Deterministic	Concurrency	
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•  Discrete	Events	(DE)	
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Recall:	Desirable	Properties	in	a		
Model	of	Time	

•  A	“present”	that	separates	the	past	and	future	
–  Needed	for	a	notion	of	“state”	

•  Support	for	causality	
–  If	A	causes	B,	then	every	observer	should	see	

A	before	B.	
•  A	well-defined	“observer”	

–  Otherwise,	you	are	stuck	trying	to	solve	the	physics	
problem.	

•  A	notion	of	“simultaneity”	
	
All	are	problematic	in	physics	but	useful	in	models.	

99 Lee, Berkeley 



  

Models	in	Time	

Assume	that	“time”	is	about	how	a	model	changes.	
	
Change	may	be:	
1.  Discrete:	indivisible,	atomic,	an	event.	
2.  Continuous:	flow,	motion	

100 Lee, Berkeley 



  

Representing	Time	

When	realized	in	a	software-based	model:	
1.  The	precision	of	time	should	be	finite	and	the	same	

for	all	observers.	
2.  The	precision	of	time	should	be	independent	of	the	

absolute	magnitude	of	the	time.		
3.  Addition	of	time	should	be	associative.	That	is,	for	

any	three	time	intervals	t1,	t2,	and	t3,	
(t1	+	t2)	+	t3	=	t1	+	(t2	+	t3)	

		

101 Lee, Berkeley 

[1] Broman, et al. “Requirements for hybrid cosimulation standards. HSCC 2015. 
[2] Cremona, et al., “Hybrid co-simulation: it's about time,” Software and Systems Modeling 2017. 
 



  

Representing	Time	

When	realized	in	a	software-based	model:	
1.  The	precision	of	time	should	be	finite	and	the	same	

for	all	observers.	
2.  The	precision	of	time	should	be	independent	of	the	

absolute	magnitude	of	the	time.		
3.  Addition	of	time	should	be	associative.	That	is,	for	

any	three	time	intervals	t1,	t2,	and	t3,	
(t1	+	t2)	+	t3	=	t1	+	(t2	+	t3)	

	

Floating	point	numbers	do	not	satisfy	these	properties.	

102 Lee, Berkeley 

[1] Broman, et al. “Requirements for hybrid cosimulation standards. HSCC 2015. 
[2] Cremona, et al., “Hybrid co-simulation: it's about time,” Software and Systems Modeling 2017. 
 



  

Representing	Time	

•  “Continuum”	does	not	imply	“continuous.	

103 Lee, Berkeley 

v1
v2

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Velocities

time



  

Models	Without	Simultaneity	

•  Sometimes	called	“interleaving	semantics”	
•  Simultaneity	è	nondeterministic	ordering	
•  Newtonian	physics	no	longer	works	
•  Models	are	quickly	intractable	

104 Lee, Berkeley 



  

Models	With	Simultaneity	

Event	A	is	simultaneous	with	event	B	if	no	
observer	can	see	that	one	event	occurred	and	
the	other	did	not.	
	
This	requires	a	well-defined	notion	of	an	
“observer.”	
	

105 Lee, Berkeley 



  

Pitfall	With	Simultaneity	

If	two	events	are	not	simultaneous,	does	
time	pass	between	their	occurrences?	

106 Lee, Berkeley 



  

What	is	the	momentum	of	the	middle	ball	as	a	function	of	time?	

	 p(t) = mv(t)



  

What	is	the	momentum	of	the	middle	ball	as	a	function	of	time?	

	
It	might	seem:	

p(t) = mv(t)

v(t) = 0 ) p(t) = 0



  

But	no,	it	is:	
	
	
where	ti	is	the	time	of	collision	

v(t) =
⇢

K, t = ti
0 otherwise



  

Since	position	is	the	
integral	of	velocity,	and	the	
integral	of	v	is	zero,	the	ball	
does	not	move.	

v(t) =
⇢

K, t = ti
0 otherwise

K 

ti 



  

v(t) =
⇢

K, t = ti
0 otherwise

A	discrete	representation	
of	this	signal	with	samples	
is	inadequate.	

K 

ti 



  

Samples yield discrete signals 

A signal   is sampled at tags  

t t0 t1 t2 t3 ts ... 

A signal s is discrete if there is an order 
embedding from its tag set π ( s )  (the tags for 
which it is defined and not absent) to the natural 
numbers (under their usual order). 

π (s) = {t0, t1,...}⊂ T
s :T→D



  

v(t) =
⇢

K, t = ti
0 otherwise

No	discrete	subset	of	real-
valued	times	is	adequate	to	
unambiguously	represent	
this	signal.	

K 

ti 



  

v(t) =
⇢

K, t = ti
0 otherwise

There	is	no	semantic	
distinction	between	a	discrete	
event	and	a	rapidly	varying	
continuous	signal.	

K 

ti 
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Superdense Time 

At each tag, the signal has exactly one value.  
At each time point, the signal has a sequence of values. 

v : (R⇥N)! R3

v(ti,0) = 0Initial value: 
 
Intermediate value: 
 
Final value: 

v(ti,1) = K

v(ti,n) = 0, n � 2

[Lee, “CPS Foundations,” DAC, 2010] 
[Maler, Manna, Pnuelli, 92]  

v : R ! R3
<latexit sha1_base64="DAkU8ClunhDKXH5S+qOyoFUOJrA=">AAACFnicbVC7TsMwFHXKq5RXgJHFokJioUoACcYKFsaC6ENqSuW4TmvVcSL7pqKK+hUs/AoLAwixIjb+BqftUFqOZOn43Hvte44fC67BcX6s3NLyyupafr2wsbm1vWPv7tV0lCjKqjQSkWr4RDPBJasCB8EasWIk9AWr+/3rrF4fMKV5JO9hGLNWSLqSB5wSMFLbPvGAPYIfpIORl70msRcS6Pl+ejfCHkQz14ezQtsuOiVnDLxI3Ckpoikqbfvb60Q0CZkEKojWTdeJoZUSBZwKNip4iWYxoX3SZU1DJQmZbqVjWyN8ZJQODiJljgQ8VmcnUhJqPQx905ktqedrmfhfrZlAcNlKuYwTYJJOPgoSgY3dLCPc4YpREENDCFXc7IppjyhCwSSZheDOW14ktdOSa/jtebF8NY0jjw7QITpGLrpAZXSDKqiKKHpCL+gNvVvP1qv1YX1OWnPWdGYf/YH19QulnJ+d</latexit><latexit sha1_base64="DAkU8ClunhDKXH5S+qOyoFUOJrA=">AAACFnicbVC7TsMwFHXKq5RXgJHFokJioUoACcYKFsaC6ENqSuW4TmvVcSL7pqKK+hUs/AoLAwixIjb+BqftUFqOZOn43Hvte44fC67BcX6s3NLyyupafr2wsbm1vWPv7tV0lCjKqjQSkWr4RDPBJasCB8EasWIk9AWr+/3rrF4fMKV5JO9hGLNWSLqSB5wSMFLbPvGAPYIfpIORl70msRcS6Pl+ejfCHkQz14ezQtsuOiVnDLxI3Ckpoikqbfvb60Q0CZkEKojWTdeJoZUSBZwKNip4iWYxoX3SZU1DJQmZbqVjWyN8ZJQODiJljgQ8VmcnUhJqPQx905ktqedrmfhfrZlAcNlKuYwTYJJOPgoSgY3dLCPc4YpREENDCFXc7IppjyhCwSSZheDOW14ktdOSa/jtebF8NY0jjw7QITpGLrpAZXSDKqiKKHpCL+gNvVvP1qv1YX1OWnPWdGYf/YH19QulnJ+d</latexit><latexit sha1_base64="DAkU8ClunhDKXH5S+qOyoFUOJrA=">AAACFnicbVC7TsMwFHXKq5RXgJHFokJioUoACcYKFsaC6ENqSuW4TmvVcSL7pqKK+hUs/AoLAwixIjb+BqftUFqOZOn43Hvte44fC67BcX6s3NLyyupafr2wsbm1vWPv7tV0lCjKqjQSkWr4RDPBJasCB8EasWIk9AWr+/3rrF4fMKV5JO9hGLNWSLqSB5wSMFLbPvGAPYIfpIORl70msRcS6Pl+ejfCHkQz14ezQtsuOiVnDLxI3Ckpoikqbfvb60Q0CZkEKojWTdeJoZUSBZwKNip4iWYxoX3SZU1DJQmZbqVjWyN8ZJQODiJljgQ8VmcnUhJqPQx905ktqedrmfhfrZlAcNlKuYwTYJJOPgoSgY3dLCPc4YpREENDCFXc7IppjyhCwSSZheDOW14ktdOSa/jtebF8NY0jjw7QITpGLrpAZXSDKqiKKHpCL+gNvVvP1qv1YX1OWnPWdGYf/YH19QulnJ+d</latexit>

[Lee & Zheng, 2005] 
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Superdense Time 

The red arrows indicate value changes between tags, which correspond 
to discontinuities. Signals are continuous from the left and continuous 
from the right at points of discontinuity. 



  

Superdense	Time	in	Ptolemy	II	

[1]	Cardoso,	et	al.,	“Continuous-Time	Models,”	in	System	Design,	Modeling,	and	
Simulation	using	Ptolemy	II,	Claudius	Ptolemaeus	(ed.),	ptolemy.org,	2014.	
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Discrete-Event	Languages	

DE	is	a	generalization	of	SR,	where	there	is	a	
notion	of	“time	between	ticks.”	
	
WARNING:	immediately	have	(at	least)	two	time	
lines:	logical	time	and	physical	time(s).	

119 [Lee & Zheng, 2007] 



  

Recall:	Asynchronous	Atomic	
Callbacks:	Periodic	Actions	

•  Shared	variable	x	
•  Timed	actions	on	x	

•  +1	every	second	
•  −2	every	two	seconds	
•  Observe	every	4	seconds	

120 

On Node.js v5.3.0, MacOS Sierra: 
 
0, 0, 0, 0, 0, −1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	



  

Our	Contribution:	Logical	Clocks		

•  Shared	variable	x	
•  Timed	actions	on	x	

•  +1	every	second	
•  −2	every	two	seconds	
•  Observe	every	4	seconds	
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var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

On Node.js v5.3.0, MacOS Sierra: 
 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …

Make Times logical not physical. 



  

Solomon Wolf Golomb 

You will never strike oil by 
drilling through the map! 

Lee, Berkeley 122 

Do not confuse the map  
with the territory!	

But this does not in any way 
diminish the value of a map! 



  

Atomic	Execution	#1	

At	initialization,	this	
executes	atomically	and	
the	time	origin	TA	for	
logical	clock	domain	‘A’	is	
set	to	the	current	
measurement	of	physical	
time.	

123 

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

x = 0



  

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

Atomic	Execution	#2	

At	time	approximately	
TA	+	1000ms,	
increment	x	by	1.	

124 

x = 1

		x	=	x	+	1;	



  

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

Atomic	Execution	#3	

At	time	approximately	
TA	+	2000ms,	
increment	x	by	1,	then	
decrement	x	by	2,	
atomically.	
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x = 0

		x	=	x	+	1;	

		x	=	x	-	2;	



  

Atomic	Execution	#4	

At	time	approximately	
TA	+	3000ms,	
increment	x	by	1.	
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x = 1

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

		x	=	x	+	1;	



  

var	x	=	0;	
function	increment()	{	
		x	=	x	+	1;	
}	
function	decrement()	{	
		x	=	x	-	2;	
}	
function	observe()	{	
		console.log(x);	
}	
setInterval(increment,	1000);	
setInterval(decrement,	2000);	
setInterval(observe,	4000);	

		x	=	x	+	1;	

Atomic	Execution	#5	

At	time	approximately	
TA	+	4000ms,	
increment	x	by	1,	then	
decrement	x	by	2,	then	
print	the	value	of	x,	
atomically.	
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x = 0

		x	=	x	-	2;	

		console.log(x);	



  

A	Semantic	Notion	of	Simultaneity	

Event	A	is	simultaneous	with	event	B	if	no	
observer	can	see	that	one	event	occurred	and	
the	other	did	not.	
	
This	requires	a	well-defined	notion	of	an	
“observer.”	
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Code	is	Testable!	
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Outline	

•  Definitions	
•  Threads	
•  Alternatives	to	Threads	
•  Actors	
•  Ports,	Hierarchy,	and	Scheduling	
•  Deterministic	Concurrency	
•  Time	
•  Discrete-Event	Languages	
•  Reactors	
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Finally!	We	can	talk	about	the	
motivating	example.	

131 

Sporadic events are 
assigned a time stamp 
based on the local 
physical-time clock 

Computations have 
logically zero delay. 

Every reactor handles 
events in time-stamp 
order. If time-stamps 
are equal, events are 
“simultaneous” 

Actuators can have a 
deadline D. An input with 
time stamp t is required to 
be delivered to the 
actuator before the local 
clock hits t + D. 

Deadline 
D 

Deadline 
D 



  

Simple,	Single-Machine	Realization	
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•  Sort reactions topologically based on precedences. 
•  Global notion of “current logical time” t. 
•  Event queue containing future events. 
•  Choose earliest time stamp t’ on the queue. 
•  Wait for the physical time clock to match t’. 
•  Execute reactors in topological sort order. 

When a sporadic sensor triggers (or 
an asynchronous event like a 
network message arrives), assign a 
time stamp based on the local 
physical-time clock. 



  

Temporal	Operators	
(Logical	Time)	
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This example has a pre-defined latency from 
physical sensing to physical actuation, thereby 
delivering a closed-loop deterministic cyber-
physical model. 

D = 0.1 

D = 0.2 



  

Real-Time	Systems	

134 

Classical real-time systems scheduling and 
execution-time analysis determines whether the 
specification can be met. 

[Buttazzo, 2005] [Wilhelm et al., 2008] 

D = 0.1 

D = 0.2 



  

Iron-Clad	Guarantees	with	
PRET	Machines	
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Precision-timed (PRET) machines deliver 
deterministic clock-cycle-level repeatable timing 
with no loss of performance on sporadic workloads. 

[Edwards & Lee, 2007] [Lee et al., 2017] 

D = 0.1 

D = 0.2 



  

Opportunity	for	Optimization	
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If the PeriodicSource does not depend on physical 
inputs, then pre-computing (logical time ahead of 
physical time) becomes possible, based on 
dependence analysis. 

D = 0.1 

D = 0.2 



  

Networked	Scheduling:	PTides	
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When is this “safe to process”?  [Zhao et al., 2007] 

T 

WCET 
W1 

[Edison et al., 2012] 

[Corbett et al., 2012] When τ ≥ T + W1 + E + N,  where 
•  τ is the local physical clock time 
•  W1 is worst-case execution time 
•  E is the bound on the clock synchronization error 
•  N the bound on the network delay 

D = 0.1 

D = 0.2 



  

Networked	Scheduling:	PTides	
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Will the deadline at ActuatorA be met?  [Zhao et al., 2007] 

T 

WCET 
W1 

[Edison et al., 2012] 

[Corbett et al., 2012] Yes if D + d1 ≥ T + W1 + E + N + W2 

WCET 
W2 D = 0.1 

D = 0.2 



  

Decoupling	Real-Time	Analysis	with	
Networked	Scheduling	
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Imposing deadlines on network interfaces 
decouples the real-time analysis problem. Each 
execution platform can be individually verified for 
meeting deadlines. 
E.g., I2 ≥ W2 , D2 ≥ W2 , D3 ≥ D2 + W3 , … 

[Zhao et al., 2007] 

WCET 
W2 

WCET 
W1 

WCET 
W3 

Interval 
I2 



  

Other	Issues:	Feedback	

•  Fixed-point	semantics	
•  Causality	loops	
•  Superdense	time	
•  …	
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Projects	at	Berkeley	Focused	on	
Engineering	Models	for	CPS	

Deterministic	models	for	CPS:	
	

•  PTIDES:	distributed	real-time	software	
–  http://chess.eecs.berkeley.edu/ptides	

•  PRET:	time-deterministic	architectures	
–  http://chess.eecs.berkeley.edu/pret		

•  Lingua	Franca:	a	programming	model	
–  https://github.com/icyphy/lingua-franca		
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Together, these 
technologies give 
a model for 
distributed and 
concurrent real-
time systems that 
is deterministic, 
has controlled 
timing, and is 
implementable. 



  

Model-Based	Design	of		
Cyber-Physical	Systems	

Changing	the	Question:	
	
Is	the	question	whether	we	can	build	models	
describing	the	behavior	of	cyber-physical	systems?	
	

	Or	
	
Is	the	question	whether	we	can	make	cyber-physical	
systems	that	behave	like	our	models?	
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