Synchronous Reactive Systems and the SR Domain

Stephen Edwards

http://www.eecs.berkeley.edu/~sedwards/

University of California, Berkeley

Reactive Embedded Systems

- Run at the speed of their environment
- When as important as what
- Concurrency for controlling the real world
- Determinism desired
- Limited resources (e.g., memory)
- Discrete-valued, time-varying
- Examples:
 - Systems with user interfaces
 - * Digital Watches
 - * CD Players
 - Real-time controllers
 - * Anti-lock braking systems
 - * Industrial process controllers

The SR Domain

- A new model of computation in Ptolemy
 - Good for reactive systems
 - Good for describing control
 - Synchronous model of time
 - Supports heterogeneity: opaque blocks
 - Unbuffered multiple-receiver communication channels
- Deterministic
 - Guaranteed by fixed-point semantics
- Fast, predictable execution time
 - Chaotic iteration-based execution
 - Fully static scheduling

The Synchronous Model of Time

- Synchronous: time is an ordered sequence of instants
- Reactive: Instants initiated by environmental events

Nothing happens between instants

• A system only needs to be "fast enough" to simulate synchronous behavior

SR Systems

- Reactive systems need concurrency
- The synchronous model makes for deterministic concurrency
 - No "interleaving" semantics
 - Events are totally-ordered
 - "Before," "after," "at the same time" all well-defined and controllable
- Embedded systems need boundedness; dynamic process creation a problem
- SR system: fixed set of synchronized, communicating processes

— Time

A Simple Way to Find the Least Fixed Point

$$\bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots \sqsubseteq \mathsf{LFP} = \mathsf{LFP} = \cdots$$

For each instant,

- 1. Start with all signals at \perp
- 2. Evaluate all blocks (in some order)
- 3. If any change their outputs, repeat Step 2

