

Steven P. Levitan Donald M. Chiarulli

Tim P. Kurzweg Mark A. Rempel

Departments of Electrical Engineering & Computer Science steve@ee.pitt.edu http://kona.ee.pitt.edu/steve University of Pittsburgh

Philippe J. Marchand Chi Fan Fredrick B. McCormick

Department of Electrical & Computer Engineering

pmarchand@ucsd.edu http://soliton.ucsd.edu University of California, San Diego

Funding: National Science Foundation- MIP-9421777

<u>chatoyant</u>

Overview

Enable the modeling of FSOI systems without costly prototyping

- 1. Free space optoelectronic information processing systems
- 2. Design Issues
- 3. Approach/Method
- 4. Signal and Component Models
- 5. Chatoyant: System Modeling
- 6. Simulations using Ptolemy
- 7. Conclusions

<u>chatoyant</u>

What's the Problem? (in O/E systems)

- O/E information processing systems are hard to design
 - Heterogeneous systems
 - Expensive to prototype (\$'s and time)
- < Hard to simulate
 - Systems cross technology boundaries
 - Normal mechanical electronic, more
- < Solution:
 - System level prototyping environment
 - # Heterogeneous tool integration
 - 1st order trade offs (architecture vs. technology)
 - Interface to "point tools" for details

"System 5" Photo

<u>chatoyant</u>

"System 5" Physical Design

"System 5" Optical Design

<u>chatoyant</u>

"System 5" Functional Design

"System 5" Electrical Design

chatoyant

Design Issues

Electronics	Opto- electronics	Optics	Packaging Mechanics	Thermal
Functional models	Analytic models	Image formation	Area, Volume	Power density
Logic, Timing		Gaussian beam propagation	1 st order layout	1 st order thermal expansion
Circuit	Physical models, Data fitting	Ray tracing, Diffraction analysis	Tolerancing	Finite element analysis

- How do these interact?
- How do we evaluate designs to perform architectural vs. technological (vs. cost, speed, power, etc.) trade-offs?

Requirements for an O/E CAD System

- Support heterogeneous implementation domains
 - Analog/digital electronics
 - Optoelectronics
 - ✤ Free space optics
 - Physical 3D layout
 - ֎ Thermal∕power analysis

Support multiple design levels

- 🏘 Functional high level
- Signal mid level
- Physical low level

<u>chatoyant</u>

Approach

Build a system level modeling tool to predict performance and analyze technology vs. architecture trade-offs

- Develop 1st order analytical models for optoelectronic components (drivers, transmitters, lenses, detectors, receivers, etc.)
- Develop and integrate numerical/physical models for optoelectronic devices (VCSELs, Modulators, etc.)
- Develop a hierarchical & modular software tool using Ptolemy engine
- Provide interfaces to existing tools (Spice, Code V, etc.)
- Integrate mechanical tolerancing and packaging models as the technology evolves

Chatoyant

System level modeling tool
 Models for signals
 Models for components

- Predict system performance
 Speed, power, weight, volume, cost, error-rate
- Understand and analyze trade-offs
 Perform optimizations
 Synthesize optics
- Interface to/from "point" tools (e.g., Code V)
- Provides a balance between accuracy and speed

<u>chatoyant</u>

Chatoyant Stars in Ptolemy

Modulators	Detectors	Lenses	Lenslets
Area	Detector Size	Focal Length	Focal Length
Spacing	Detector Spacing	Diameter	Diameter
Lambda	Distance	Distance	Distance
Spotsize	x, y offsets	x, y offsets	x, y offsets
Filename	Radius of Integration		Spacing
Gauss/Ray	R, C, A		Number

* C. Fan, et. al. "Digital free-space optical interconnections: a comparison of transmitter technologies", Applied Optics 34(7) pp. 3103-3115, 10 June 1995.

<u>chatoyant</u>

 $P_{out} = \frac{\eta_{\rm LI} / V_t}{(1 - \eta_{\rm LI} / V_t)} (P_{in} - I_t V_t)$

* A.V. Krishnamoorthy et.al. IEEE Photonics Technology Letters, 7(11), Nov 1995

 I_0

 $\int_{-\infty}^{\Delta z} W_0$

Intensity - radial symmetry, propagation in *z*:

$$I(r, z) = I_0 \left[\frac{W_0}{W(z)} \right]^2 \exp\left[-\frac{2r^2}{W^2(z)} \right]$$

Waist size: $W(z) = W_0 \left[1 + \left(\frac{z}{z_0}\right)^2 \right]^{1/2}$

20µm spot Modulators (µW)		10µm Detectors		20µm Detectors			35mm Detectors				
771	771	906	360	422	422	703	826	826	771	905	905
771	906	906	422	422	360	826	826	703	905	905	771
906	906	771	422	360	360	826	703	703	905	771	771

<u>chatoyant</u>				

Time Domain Analysis

- Method used for dynamic response of each of the modules in the system.
 - Example: transfer function for single stage transimpedance amplifier:

$$V_{o}(s) = \frac{R_{f}}{1 + \left(\frac{R_{f}C}{A}\right)s} \cdot P_{optic}(s)$$

- Convert to time domain
- Number of points in piece-wise linear approximation is user defined variable

Dynamic Simulations at 100 / 300 MHz

<u>chatoyant</u>

5μm Detectors On-center v.s. 20μm Detectors Off-center

20µm Modulators			5µm Detectors			Misaligned Lens		
771	771	906	113	133	133	193	227	227
771	906	906	133	133	113	227	227	193
906	906	771	133	113	113	227	193	193

Eye Diagram - 300MHz

VCSELs

	1			
	3	1	1	

20µm Source Power (mW)		35µm Detectors(mW)			20µm Detectors(mW)			
50	50	10	14.20	1.58	1.58	12.95	1.44	1.44
50	10	10	1.58	1.58	14.20	1.44	1.44	12.95
10	10	50	1.58	14.20	14.20	1.44	12.95	12.95

VCSEL Output - 100MHz

chatoyant

Gaussian Beam Clipping by a Circular Aperture: Diffractive Effects

Power loss related to the size of the aperture:

$$P_{new} = P\left(1 - e^{-2k^2}\right)$$

ratio of diameter of aperture to waist size at aperture:

$$k = D_{apt} / (2W_{apt})$$

2.5

1.5

2.0

K VALUES

2.5

```
chatoyant
```

2.0

K VALUES

0.7 ⊾ 1.0

1.5