
UNIVERSITY OF CALIFORNIA AT BERKELEY

i lp_future.doc

The Future of the Ptolemy Project —
Design of Distributed Adaptive Signal Processing Systems

Edward A. Lee
Principal Investigator

UC Berkeley
Dept. of EECS

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 2 of 18i lp_future.doc

DARPA DASP Project

Phase 1 (11/96 — 5/98)

• Modular deployable design tools

• Domain-specific tools for distributed adaptive signal proc.

• Models for dynamically configured systems

Phase 2 (6/98 — 11/99)

• Process-level type system

• Formal analysis and debugging

• System-level visualization

Option (5/97 — 5/98)

• Array formalism for multidimensional signal processing

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 3 of 18i lp_future.doc

Adaptive Systems

Classical adaptive signal processing

• system identification

• interference nulling

• reversing distortion

Resource adaptive signal processing

• conserving power

• meeting changing latency and QOS requirements

• using available sensor data

• using network resources (memory, cycles, bandwidth)

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 4 of 18i lp_future.doc

Modular Deployable Design Tools

Past design software:

• Monolithic

• Huge

• Back-room use

Future design software:

• Modular

• Deployable

• In-the-field evolution

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 5 of 18i lp_future.doc

Initial Strategy

Toolkit approach to design, creating an environment that is

• safe (no core dumps)

• extensible

• distributable

• concurrent

• portable

Deployed designs must minimize the use of

• C, C++

• Thus, most of the existing Ptolemy kernel

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 6 of 18i lp_future.doc

Initial Languages

In addition to satisfying all the above,

Tcl/Tk/Itcl

• scripting language

• high-level, object-oriented

• universal, communicable data type (strings)

• extensive graphical user interface toolkits

Java

• faster (we have measured up to 8x)

• lower-level, object-oriented

• modularity built in

• concurrent (threads), although at a very low level

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 7 of 18i lp_future.doc

Tycho

Modular Itcl class library

• system control

• configuration

• user interface

Current facilities:

• context-sensitive text editors

• scripting shells (Tcl, Matlab, Mathematica)

• graphics toolkit (the Tycho Slate)

• integrated, interactive, HTML documentation

• preferences manager, version control, widget library

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 8 of 18i lp_future.doc

A Portion of the Class Hierarchy (displayed in Tycho)

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 9 of 18i lp_future.doc

The Tycho Slate

Extends the Tk canvas supporting

• creating complex items,

• re-using common patterns of user interaction.

There are two key uses of the Slate:

• As a higher-level canvas for building graphical displays and
editors. The Slate is used this way within the Graphics class
and subclasses.

• As a toolbox for rapidly building custom widgets. The Slate
is used this way to create some of the custom widgets used in
Ptolemy C-code-generated systems.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 10 of 18i lp_future.doc

Integrated, Interactive Documentation

In the above example, clicking on the Tcl code at the bottom
executes the code, creating the example slate on the right.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 11 of 18i lp_future.doc

Progress To Date with Java

• implemented a Kahn process network model in Java

• outlined a dataflow/FSM hybrid model of computation

• installed Sun’s tcljava interface

• ‘tycho -java’ starts up java with Tycho

• can reparent Java applet viewer within Tycho

Problems with Java/Tycho Interface

• Java documentation system is not compatible with Tycho’s

• Need a communication architecture for Java/Tcl

• Need to evaluate effectiveness of just-in-time compilation

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 12 of 18i lp_future.doc

Sequential Control Mixed with Concurrency: *Charts

Choice of domain here determines concurrent semantics

Hierarchy is free

FSM

FSM

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 13 of 18i lp_future.doc

Determinate, Concurrent, Distributable Java Design

Based on a hierarchy of four increasingly expressive dataflow
models:

• Synchronous dataflow

• Boolean dataflow

• Dynamic dataflow

• Kahn process networks

Combined hierarchically with

• Finite State Machines (FSMs)

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 14 of 18i lp_future.doc

Properties of the FSM/DF Hierarchical Nesting

• The combined models are more expressive than either DF
or FSMs alone.

• In certain cases, the combination is still finite state, so
critical questions remain decidable.

• Advanced visual syntaxes can be used for both models (but
we need a heterogeneous syntax manager: Tycho).

• The formal properties of both models can be independently
exploited to get high-quality synthesis of software or
hardware.

• The combination achieves:
• High performance number crunching (DF).

• Control, mutability, and on-line decision-making (FSM).

• Hierarchy (Ptolemy).

• Concurrency (DF).

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 15 of 18i lp_future.doc

Alternative Concurrency Models

• Synchronous/reactive systems (Esterel, Lustre, Signal,
Argos) execute in a sequence of globalticks. Signals have
values at each tick, and these values form afixed point (x =
f(x)).

• Discrete-event systems, also calledvirtual time systems
(VHDL, Verilog, and some communicating FSMs),
maintain a global notion of (simulated) time and execute
chronologically.

S/R systems are more tightly coordinated than dataflow sys-
tems, have strong formal properties, and can be implemented
in software or hardware.

DE systems are expensive to implement in software but useful
for modeling concurrent real-time systems.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 16 of 18i lp_future.doc

Example: DE, Dataflow, and FSMs

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 17 of 18i lp_future.doc

Semantics — What does it Mean?

This well-established field
addresses many of the core prob-
lems in the specification and model-
ing of concurrent systems:

Issues

• Concurrency

• Synchronization

• A model of time

• Turing completeness

• Determinacy

• Finite state

• Redundancy

Instascan MRI image of a brain

responding to light stimulation.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p. 18 of 18i lp_future.doc

Abstraction

Abstraction is the act of pulling
away or withdrawing from the
physical properties of the imple-
mentation...

... closer to the problem domain,

... facilitate specification,

... avoid overspecification,

... hide irrelevant details,

... facilitate design re-use,

... facilitate design validation.

Piet Mondrian, Tableau I , 1921

