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DARPA DASP Project

Phase 1 (11/96 — 5/98)

•  Modular deployable design tools

•  Domain-specific tools for distributed adaptive signal proc.

•  Models for dynamically configured systems

Phase 2 (6/98 — 11/99)

•  Process-level type system

•  Formal analysis and debugging

•  System-level visualization

Option (5/97 — 5/98)

•  Array formalism for multidimensional signal processing
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Adaptive Systems

Classical adaptive signal processing

•  system identification

•  interference nulling

•  reversing distortion

Resource adaptive signal processing

•  conserving power

•  meeting changing latency and QOS requirements

•  using available sensor data

•  using network resources (memory, cycles, bandwidth)
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Modular Deployable Design Tools

Past design software:

•  Monolithic

•  Huge

•  Back-room use

Future design software:

•  Modular

•  Deployable

•  In-the-field evolution
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Initial Strategy

Toolkit approach to design, creating an environment that is

•  safe (no core dumps)

•  extensible

•  distributable

•  concurrent

•  portable

Deployed designs must minimize the use of

•  C, C++

•  Thus, most of the existing Ptolemy kernel
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Initial Languages

In addition to satisfying all the above,

Tcl/Tk/Itcl

•  scripting language

•  high-level, object-oriented

•  universal, communicable data type (strings)

•  extensive graphical user interface toolkits

Java

•  faster (we have measured up to 8x)

•  lower-level, object-oriented

•  modularity built in

•  concurrent (threads), although at a very low level



UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p.  7 of  18i lp_future.doc

Tycho

Modular Itcl class library

•  system control

•  configuration

•  user interface

Current facilities:

•  context-sensitive text editors

•  scripting shells (Tcl, Matlab, Mathematica)

•  graphics toolkit (the Tycho Slate)

•  integrated, interactive, HTML documentation

•  preferences manager, version control, widget library
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A Portion of the Class Hierarchy (displayed in Tycho)
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The Tycho Slate

Extends the Tk canvas supporting

•  creating complex items,

•  re-using common patterns of user interaction.

There are two key uses of the Slate:

•  As a higher-level canvas for building graphical displays and
editors. The Slate is used this way within the Graphics class
and subclasses.

•  As a toolbox for rapidly building custom widgets. The Slate
is used this way to create some of the custom widgets used in
Ptolemy C-code-generated systems.
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Integrated, Interactive Documentation

In the above example, clicking on the Tcl code at the bottom
executes the code, creating the example slate on the right.
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Progress To Date with Java

•  implemented a Kahn process network model in Java

•  outlined a dataflow/FSM hybrid model of computation

•  installed Sun’s tcljava interface

•  ‘tycho -java’ starts up java with Tycho

•  can reparent Java applet viewer within Tycho

Problems with Java/Tycho Interface

•  Java documentation system is not compatible with Tycho’s

•  Need a communication architecture for Java/Tcl

•  Need to evaluate effectiveness of just-in-time compilation
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Sequential Control Mixed with Concurrency: *Charts

Choice of domain here determines concurrent semantics

Hierarchy is free

FSM

FSM
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Determinate, Concurrent, Distributable Java Design

Based on a hierarchy of four increasingly expressive dataflow
models:

•  Synchronous dataflow

•  Boolean dataflow

•  Dynamic dataflow

•  Kahn process networks

Combined hierarchically with

•  Finite State Machines (FSMs)
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Properties of the FSM/DF Hierarchical Nesting

•  The combined models are more expressive than either DF
or FSMs alone.

•  In certain cases, the combination is still finite state, so
critical questions remain decidable.

•  Advanced visual syntaxes can be used for both models (but
we need a heterogeneous syntax manager: Tycho).

•  The formal properties of both models can be independently
exploited to get high-quality synthesis of software or
hardware.

•  The combination achieves:
•  High performance number crunching (DF).

•  Control, mutability, and on-line decision-making (FSM).

•  Hierarchy (Ptolemy).

•  Concurrency (DF).
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Alternative Concurrency Models

• Synchronous/reactive systems (Esterel, Lustre, Signal,
Argos) execute in a sequence of globalticks. Signals have
values at each tick, and these values form afixed point (x =
f(x)).

• Discrete-event systems, also calledvirtual time systems
(VHDL, Verilog, and some communicating FSMs),
maintain a global notion of (simulated) time and execute
chronologically.

S/R systems are more tightly coordinated than dataflow sys-
tems, have strong formal properties, and can be implemented
in software or hardware.

DE systems are expensive to implement in software but useful
for modeling concurrent real-time systems.
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Example: DE, Dataflow, and FSMs
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Semantics — What does it Mean?

This well-established field
addresses many of the core prob-
lems in the specification and model-
ing of concurrent systems:

Issues

•  Concurrency

•  Synchronization

•  A model of time

•  Turing completeness

•  Determinacy

•  Finite state

•  Redundancy

Instascan MRI image of a brain

responding to light stimulation.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 1997, p.  18 of  18i lp_future.doc

Abstraction

Abstraction is the act of pulling
away or withdrawing from the
physical properties of the imple-
mentation...

... closer to the problem domain,

... facilitate specification,

... avoid overspecification,

... hide irrelevant details,

... facilitate design re-use,

... facilitate design validation.

Piet Mondrian, Tableau I , 1921


