

UNIVERSITY OF CALIFORNIA AT BERKELEY

Some Models of Computation Gears Imperative languages Petri nets Synchronous dataflow Dynamic dataflow Process networks Concrete data structures Discrete-events Synchronous/Reactive languages Communicating sequential processes Finite state machines Hierarchical communicating finite state machines

UNIVERSITY OF CALIFORNIA AT BERKELEY

Projections and Composition

Let $I = (i_1, ..., i_m)$ be an ordered set of indexes in the range $1 \le i \le N$, and define the projection $\pi_I(\mathbf{s})$ of

$$\mathbf{s} = (s_1, ..., s_N) \subseteq S^N$$
 onto S^m by

$$\pi_I(\mathbf{s}) = (s_{i_1}, ..., s_{i_m})$$

Using projection and tensor products, a composition of processes can always be given as an intersection of sets of behaviors:

$$Q = \left(\bigcap_{P_i \in \mathbf{P}} P_i\right)$$

ilp_concur.doc

© 1997, p. 11 of 25

UNIVERSITY OF CALIFORNIA AT BERKELEY

Inputs An *input* to a process is an externally imposed constraint A ⊆ S^N such that A ∩ P is the total set of acceptable behaviors. The *set of all possible inputs* B ⊆ ℘(S^N) is a further characterization of a process. Example: for a process P ⊆ S^N with m input signals having indexes in the set I, each element A ∈ B is a set of tuples of signals {s:π_I(s) = s'} for some s' ∈ S^m

UNIVERSITY OF CALIFORNIA AT BERKELEY

UNIVERSITY OF CALIFORNIA AT BERKELEY

ilp_concur.doc

© 1997, p. 14 of 25

Discrete Event Systems

Given a process Q, and a tuple of signals $s \in Q$ that satisfies the process, let T(s) denote the set of tags (time stamps) appearing in any signal in the tuple s.

• A *discrete-event tag system* is where *T* is totally ordered, and for every process *Q* and every behavior s ∈ *Q*, there exists an order-preserving bijection from some subset of the integers to *T*(s).

Intuitively

Any pair of events in a signal have a finite number of intervening events.

ilp_concur.doc

© 1997, p. 17 of 25

UNIVERSITY OF CALIFORNIA AT BERKELEY

- A *causal* process has a non-negative (but possibly zero) time delay from inputs to outputs.
- A *strictly causal* process has a positive time delay from inputs to outputs.
- A *delta causal* process has a time delay from inputs to outputs of at least Δ for some constant Δ > 0.

ilp_concur.doc

© 1997, p. 18 of 25

A Metric Space for DE Signals

In a one-sided DE system, where WOLG $T \subseteq [0, \infty)$, define the *Cantor metric* to be

$$d(\mathbf{s}_1, \mathbf{s}_2) = \frac{1}{2^t}$$

where t is the smallest time where the two signals differ, or if $s_1 = s_2$, then $d(s_1, s_2) = 0$.

With this metric, behaviors of a discrete-event system become points in a metric space!

ilp_concur.doc

© 1997, p. 19 of 25

UNIVERSITY OF CALIFORNIA AT BERKELEY

Causality in the Cantor Metric Space

Causality: $d(F(\mathbf{s}), F(\mathbf{s}')) \leq d(\mathbf{s}, \mathbf{s}')$.

Strict causality: $d(F(\mathbf{s}), F(\mathbf{s}')) < d(\mathbf{s}, \mathbf{s}')$.

Delta causality: there exists a k < 1 such that

 $d(F(\mathbf{s}), F(\mathbf{s}')) \le kd(\mathbf{s}, \mathbf{s}')$

F is a contraction mapping.

Note:
$$k = \frac{1}{2^{\Delta}}$$
.

ilp_concur.doc

© 1997, p. 20 of 25

UNIVERSITY OF CALIFORNIA AT BERKELEY

Lessons	
• If subsystems are d theorem gives us a d behavior.	elta causal, then the Banach fixed point constructive way to find their one unique
• Specification langua (VHDL, for exampl that, despite the sin	ages often only insist on <i>strict causality</i> le, has a so-called "delta time" model nilar name, only ensures strict causality).
• The set of VHDL si	gnals is not compact.
• The lack of a constr practice (VHDL sin where time fails to a	ructive solution manifests itself in nulators, for example, can get stuck, advance).
ilp_concur.doc	© 1997, p. 23 of 25

Related Models	
• Fidge, 1991 (processes that can fork and join increment a counter on each event)	
• Lamport, 1978 (gives a mechanism in which messages in an asynchronous system carry time stamps and processes manipulate these time stamps)	
Mattern, 1989 (vector time)	
 Mazurkiewicz, 1984 (uses partial orders in developing an algebra of concurrent "objects" associated with "events") 	
 Pratt, 1986 (generalizes the notion of formal string languages to allow partial ordering). 	
• Winskel 1993 (describes "event structures," a closely related framework for concurrent systems).	
• Yates, 1993 (works with Δ -causal functional processes in a timed model with metric time).	
ilp_concur.doc © 1997, p. 24 of 25	

Conclusions	
ng and	
g intrinsic	
1997, p. 25 of 25	