

High Performance Scalable Computing (HPSC) Performance Modeling Using Ptolemy

Eric K. Pauer Sanders, a Lockheed Martin Company Signal Processing Center Nashua, NH 03061-0868 pauer@sanders.com

- HPSC architecture provides:
 - high data bandwidth
 - distributed processing
 - real time processing
- Goal is to simplify development by separating:
 - application software implementing algorithm
 - system software passing data among processing nodes
- HPSC comprised of:
 - Processing nodes
 - LANai (network interfaces)
 - Myrinet network of switches

Node – LANai	4-port Switch	4-port Switch	8-port	-	LANai Node
			Switch		
Node – LANai	4-port Switch	4-port Switch	Switch	16-port	LANai - Node
				Switch	
Node – LANai	4-port Switch	8-port	4-port Switch	Switch	LANai Node
		Switch		-	
Node – LANai	4-port Switch		4-port Switch	-	LANai Node

SANDERS Milliotic Comm

- Implement application algorithms
- Consist of
 - one or more digital signal processors and/or RISC processors
 - programmable hardware logic like Field Programmable Gate Arrays (FPGAs) or Application Specific Integrated Circuits (ASICs)
 - a combination of the above

Memory	Memory
DSP	DSP
FPGA	ASIC
Memory	

LANai

- acts as the interface between the processing node and the network
- · has independent transmit and receive sections
- transmits and receives data at 160 Mbyte/second rate
- LANai has high speed dedicated static RAM to load and store data
- Data synchronization tables are used to route data through network (transmit) or organize incoming data from network (receive)
- LANai transmit side creates packet header

LANAI Transmit DST						
Packet	Address	Size	Route words	Index		
0	0x40000000	512	0432	4		
1	0x40000200	256	12036	2		
:		:	:	:		
N-1	0X40001100	2048	517	1		

LANAI Receive DST						
Packet	Address	Size				
0	0x70000000	1024				
1	0x70000400	256				
:	:	:				
M-1	0x70001000	512				

SANDERS

- · Myrinet network is comprised of a network of multi-port switches
- Ports have independent transmit and receive ports
- Most common are 4-port, 8-port, and 16-port switches
- Have throughput of 160 Mbytes/second
- Operate by extracting port number from header, and passing data packet through specified transmit port
- Very low latency
- No buffering packet is transmitted as soon as header is decoded
- Must handle contention when multiple packets from different receive ports are addressed to same transmit port

No Contention

	0	0	0	0		
Node LANai	3 4-port 3	4-port 7 Switch 1	15 1	1	LANai -	Node
	2 0		8-port 14 Switch 2	2		
Node – LANai –	³ 4-port <u>3</u> Switch ¹	4-port 5 Switch	13 3 12	16-port	LANai –	Node
	$\frac{2}{3}$ $\frac{1}{4}$ part 7	3	4 0 11	Switch 4		
Node – LANai –	Switch 6	8 port	Switch	,	LANai –	Node
	20 -	Switch ²	2 0 10	6		
Node – LANai –	<u>3</u> 4-port <u>5</u> Switch ¹	3	4-port 9 Switch 1	7	LANai -	Node
	2	4	2	3		

Route Words 2 1 1 3 3 2 1 1 1 5 2 1 3 1 7

0001111

Contention

- Discrete Event (DE) Domain: event-driven model of computation
- SourceNode star: creates data blocks at specified rate
- Node star: processes data blocks at specified rate
- LANai star
 - using data blocks from the SourceNode or Node, the transmit side of LANai creates data packets to transmit to the network
 - receive side of LANai receives data packets from the network and reassembles data packets to create data blocks for the Node
 - receive side also receives control packets to suspend or resume transmission of data
- Switch star
 - receives data or control packets on one port and retransmits them on another port
 - must handle contention and send appropriate control packets to suspend or resume data transmission
- · NotUsed star: used to terminate unused ports on Switch stars

- NodeDataBlock represents block of data sent to/from SourceNode or Node from/to LANai
- Packet particle
 - serves as pure virtual (abstract) base class for other packets
- DataPacket particle
 - derived from Packet
 - represents typical Myrinet data packet
- ControlPacket particle
 - derived from Packet
 - represents Myrinet control packet
 - STOP or GO control packet
- Feedback particles (modified)
 - used on internal feedback queues of stars to cause the star to be revisited (executed) at a future time

- illustrates behavior as DataBlock consisting of N data packets is transmitted
- i represents packet index
- ignore is used as counter for the number of feedback particles to ignore due to incoming STOP messages

- state diagram applies to each individual port within a Switch
- ignore is used as counter for the number of feedback particles to ignore due to incoming STOP messages
- · queued is used as counter for the number of data packets queued
- DP N represents data packet received on port N (current packet)
- DP X represents data packet arriving on other than port N

Simple Myrinet Modeling Example

- Yellow: start-up latency
- Blue: normal transmission/reception
- Green: processing of data on Node
- Orange: origin of contention, one or more packets queued in the switch
- Red: propogating effect of switch contention down current data path

HPSC Architecture with Multiple Layers of Switches

- Yellow: start-up latency
- Blue: normal transmission/reception
- Green: processing of data on Node
- Orange: origin of contention, one or more packets queued in the switch
- Red: propogating effect of switch contention down current data path

SANDERS Lacitored Identity Comment

- Allows different hardware configurations to be examined without
 the expense or time of procuring or setting up hardware
- Rapid exploration of many hardware configurations
- Provides both macro and micro view at the behavior of the system
 - Where bottlenecks exist and why
 - Where underutilized capability exists
 - Overall system performance can be predicted (estimated)
- Performance modeling can provide information to hardware
 - Architecture and interconnects
 - DSTs can be reused
- Goal: to have performance models predict performance to within +/- 10% of actual

Examples of Hierarchical Performance Modeling within Ptolemy

- Groups of connected stars can be captured into a single galaxy using Ptolemy's hierarchical capability
- · Useful for capturing logical and/or physical boards or subsystems
- · Useful for modeling at different levels of abstraction

SANDERS A Locificad Mexic Company

- HPSC architecture (http://www.sanders.com/hpc/HPSCS/HPSCS.html)
- Myrinet protocol (http://www.myri.com)
- Ptolemy (http://ptolemy.eecs.berkeley.edu)
- Performance modeling extensions to Ptolemy's DE domain
 - New stars and associated state models
 - New particles
- Examples of HPSC Performance modeling and Gantt Tool
- Advantages of Performance modeling
- Role of Hierarchy in Performance Modeling
- Short and long papers on this work available at
 - http://www.sanders.com/spard/publish.html