
Mixing Dataflow with Control

Wan-Teh Chang
Edward A. Lee
David G. Messerschmitt
EECS Department
UC Berkeley

Major collaborators:

Frederic Boulanger
Bilung Lee

Motivation

Objective: To develop specialized computational mod-
els for describing complex control functionality in
Ptolemy, and mix them with other computational mod-
els like dataflow.

• Dataflow graphs represent numerical computation
(DSP) tasks.

• Controllers control and sequence the dataflow tasks.

Issues:

• Better abstractions for control

• Semantics of interface between control and dataflow

Hierarchical Description of Control Functionality

Finite state machines (FSM):

• Intuitive, well-developed formal theory

• Flat and sequential, practical difficulty in describing
large complex controllers.

Method: Augment the familiar event/state-based mod-
els with hierarchy and concurrency.

• Textual languages: Esterel

• Graphical languages: Statecharts, Argos

Textual Language: Esterel

A special-purpose programming language for reactive
systems (controllers etc.)

• Developed at INRIA, France

• Perfect synchrony hypothesis

• Can be compiled into C or C++

Basic features:

• Sequencing, testing, looping, and parallel constructs

• Communication mechanism: Instantaneous broadcast
of signals

• Interrupt: do stmt watching S

A Simple Esterel Program

module EsTest:
input A, B, R;
output O;
loop

do
[await A || await B];
emit O;
halt

watching R
end loop
end module

A
R

B/O A/O

R

R
B

AB/O

Ptolemy’s Esterel Interface

Stars in SDF, DE, and CGC can be defined in Esterel.

Esterel
program

ptlang file

C/C++ file Ptolemy
esterel2pl

wrapper

Compile
and link

Mixing Esterel with Ptolemy Discrete Event

The DE domain has totally ordered
events, so synchronous modules fit
naturally within it.

Synchronous dataflow
using TRUE/FALSE
encoding of pure signals,
is one option.

Mixing Esterel with Dataflow Process Networks

Finite-State Machines

• A graphical entry tool for drawing state transition
diagrams

• Each arc has a guard (enabling condition) and an
action (code to execute when guard is true).

• Currently, guards are Tcl expressions, and actions are
Tcl code.

Finite state machine TclScript
star

Tcl code of
the finite

state machine

guard / action

Tcl Code for FSM

proc fsm_phone_react {event} {
global fsm_phone_state

switch $fsm_phone_state {
...
ringing {

...
if {$event == off_hook} {

action
set fsm_phone_state active

}
...

}
...

}

return [list $out1 $out2]
}

active

ringing

off_hook / action

Input: event
Output: out1, out2

Name: phone

Hierarchy and Concurrency

Hierarchical state:

• containing complexity

• a compact way to describe interrupt behavior

Concurrency: can be (partially) achieved by having the
concurrent finite-state controllers communicating with
dataflow semantics.

Mixing Control with Dataflow

Invoking dataflow graphs
from within control ?A dataflow actor invokes

control (FSM, Esterel)

• Control inside a dataflow actor

• Dataflow graph inside control?

FSM Controls Invocation of Ptolemy Galaxies

Flexible wormhole: a star that is replaced by one of a set
of galaxies. The choice of galaxy is controlled dynami-
cally by a Tcl script.

• Preliminary demo works

• Semantic issues

Dataflow
graphs

Control
(FSM)

Internal events

Data in Data out

Control outControl in

SDFWorm star

00100000100
e e

Conclusions

• Approaches to introducing control into Ptolemy and
their implementations

• Largely using control abstractions and languages
developed elsewhere but seeking improvements

• Interesting semantic issues in mixing control with
dataflow

• Invoking dataflow graphs from within control

