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Parallelism in Embedded DSP Systems

•  Parallelism : concurrency at the system level
•  target a system consisting of a mix of dedicated parts such as FFT chips

and programmable DSPs

•  Embedded : low cost, dedicated multiprocessor
•  Examples — multimedia: set-top boxes, multimedia workstations,

communications: digital cell phones

•  Motivation
•  high throughput applications demand processing power

•  use of commodity programmable parts: attractive alternative to ASICs

•  advantages of software solutions

•  silicon technology:  multi-DSP chips available from number of companies
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Parallel Implementation of DSP Algorithms Static

•  Issues:scheduling, interprocessor communication (IPC)
& synchronizationoverhead,hard real-time requirement
•  computation on unbounded data streams

•  Our strategy
•  Restricted application domain:Synchronous Dataflow and extensions

•  Well-defined methodology:

- Compilation from dataflow graphs
- Extensive use of compile-time scheduling techniques

•  Given this methodology optimize hardware architecture and parallel
implementation:

- Reduce IPC overhead: Ordered Transactions scheme
- Reduce synchronization overhead
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Scheduling

•  Scheduling homogeneous SDF graphs
•  Assigning actors to processor:Assignment

•  Determining the order of execution of actors on a processor:Ordering

•  Determining when an actor actually fires:Firing times

•  Dynamic (run time) vs. Static (compile time) strategies

•  Use execution time estimates
• Fully Static : all three scheduling steps performed at compile time,

assuming execution times estimates are precise
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Blocked Multiprocessor Schedules

•  Homogeneous SDF graph converted to an Acyclic
Precedence Graph (APG) by removing edges with delays
•  Intra-iteration precedences ignored during scheduling

•  Minimize : classical MP scheduling from an APG
•  Optimal scheduling under resource constraints is intractable (NP-Hard)

•  Several heuristics exist:  list scheduling [Hu 61], [Sih 92], [Sarkar 89], ...

•  Unfolding  (increased blocking factor) and retiming transformations
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Implementation in Ptolemy

Block Diagram ➜ SDF Graph ➜ Homogeneous APG ➜
Parallel Schedule ➜ Multiprocessor code
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Self-timed Scheduling

•  Fully-static schedule assumes knowledge of exact actor
execution times -not always practical:
•   compilation from high-level language, error handling, unpredictable

execution times due to instruction-level parallelism

•  Model followed in Ptolemy
•  reasonably good estimates of execution times known at compile time

•  construct fully-static schedule, ignore exact timing information

•  Larger run time overhead compared to fully-static sched.

start start

Proc 1 Proc 2

D

C

A

B

Proc 1

Proc 2

A

B

D

C rec
D
A

C
rec
B
sendsend

UNIVERSITY OF CALIFORNIA AT BERKELEY 8

Communication Pattern

•  Attempt to predict run time inter-processor
communication pattern and use this information to
optimize parallel implementation
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Communication Pattern
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Ordered Transactions
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Ordered Memory Access Architecture

•  Low overhead IPC (3 instruction cycles)

•  No need for explicit synchronization

•   Performance degrades if execution times vary at run time (or if compile
estimates are bad), computations are correct
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Choosing a Transaction Order

•  Transaction order imposes run time constraints absent in
the unconstrained self-timed schedule
•  Partial order due to precedence constraints: ,

•  Any total order is a valid transaction order

•  Naive transaction order derived from one block of the
schedule: not always the best choice
•  Can efficiently determine a transaction order that is “optimal”
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Minimizing Synchronization in self-timed schedules

•  Self-timed scheduling: each inter-processor
communication point is also asynchronization point
•  sender needs to check for buffer overflow

•  receiver needs to check for buffer empty

•  Compile time analysis of schedule can reduce this
overhead
• Sender synchronizations are eliminated by sizing buffers appropriately

•  Remove redundantreceiver synchronizations: synchx2 is redundant

•  Perform transformations on the schedule: introduce new synchronization
points
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Conclusions

•  Discussed mechanism forconstructing parallel schedules
from SDF graphs

•  Discussed howcompile time scheduling can be effectively
employed for SDF applications

•  Discussedparallel code generation methodology in
Ptolemy

•  Presented theordered transactions approach: hardware
architecture optimized for the self-timed strategy
employed in Ptolemy

•   Describedminimization of synchronization costs by
means of compile-time analysis


