
UNIVERSITY OF CALIFORNIA AT BERKELEY

Ptolemy Miniconference, March 1995

Parallel Implementation Techniques for Embedded
DSP Systems

S. Sriram

Prof. Edward A. Lee

UNIVERSITY OF CALIFORNIA AT BERKELEY 2

Parallelism in Embedded DSP Systems

• Parallelism : concurrency at the system level
• target a system consisting of a mix of dedicated parts such as FFT chips

and programmable DSPs

• Embedded : low cost, dedicated multiprocessor
• Examples — multimedia: set-top boxes, multimedia workstations,

communications: digital cell phones

• Motivation
• high throughput applications demand processing power

• use of commodity programmable parts: attractive alternative to ASICs

• advantages of software solutions

• silicon technology: multi-DSP chips available from number of companies

UNIVERSITY OF CALIFORNIA AT BERKELEY 3

Parallel Implementation of DSP Algorithms Static

• Issues:scheduling, interprocessor communication (IPC)
& synchronizationoverhead,hard real-time requirement
• computation on unbounded data streams

• Our strategy
• Restricted application domain:Synchronous Dataflow and extensions

• Well-defined methodology:

- Compilation from dataflow graphs
- Extensive use of compile-time scheduling techniques

• Given this methodology optimize hardware architecture and parallel
implementation:

- Reduce IPC overhead: Ordered Transactions scheme
- Reduce synchronization overhead

1

1

1

1

1
A

B

C

UNIVERSITY OF CALIFORNIA AT BERKELEY 4

Scheduling

• Scheduling homogeneous SDF graphs
• Assigning actors to processor:Assignment

• Determining the order of execution of actors on a processor:Ordering

• Determining when an actor actually fires:Firing times

• Dynamic (run time) vs. Static (compile time) strategies

• Use execution time estimates
• Fully Static : all three scheduling steps performed at compile time,

assuming execution times estimates are precise

Proc 1

Proc 2

Proc 3

A
B

C
D

E

G

F

A
B

C
D

E

F

G

Proc 1

Proc 2

Proc 3 Send
Receive
Idle time

Proc 1

Proc 2

Proc 3

A B

C D E

F G

HSDF Graph Partitioned graph

Gantt Chart

t

UNIVERSITY OF CALIFORNIA AT BERKELEY 5

Blocked Multiprocessor Schedules

• Homogeneous SDF graph converted to an Acyclic
Precedence Graph (APG) by removing edges with delays
• Intra-iteration precedences ignored during scheduling

• Minimize : classical MP scheduling from an APG
• Optimal scheduling under resource constraints is intractable (NP-Hard)

• Several heuristics exist: list scheduling [Hu 61], [Sih 92], [Sarkar 89], ...

• Unfolding (increased blocking factor) and retiming transformations

A

B

D

C

A

B

D

C
C

D

A

B

Proc 1

Proc 2

C

D

A

B

Proc 1

Proc 2

C

D

A

B

C

D

A

T=3 t.u.

T

UNIVERSITY OF CALIFORNIA AT BERKELEY 6

Implementation in Ptolemy

Block Diagram ➜ SDF Graph ➜ Homogeneous APG ➜
Parallel Schedule ➜ Multiprocessor code

UNIVERSITY OF CALIFORNIA AT BERKELEY 7

Self-timed Scheduling

• Fully-static schedule assumes knowledge of exact actor
execution times -not always practical:
• compilation from high-level language, error handling, unpredictable

execution times due to instruction-level parallelism

• Model followed in Ptolemy
• reasonably good estimates of execution times known at compile time

• construct fully-static schedule, ignore exact timing information

• Larger run time overhead compared to fully-static sched.

start start

Proc 1 Proc 2

D

C

A

B

Proc 1

Proc 2

A

B

D

C rec
D
A

C
rec
B
sendsend

UNIVERSITY OF CALIFORNIA AT BERKELEY 8

Communication Pattern

• Attempt to predict run time inter-processor
communication pattern and use this information to
optimize parallel implementation

start start

Proc 1 Proc 2

D

C

A

B

Proc 1

Proc 2

rec
D
A

C
rec
B
sendsend

D

C

A

B

Proc 1

Proc 2

3

A

C

D

C

D

B

A D

CB

A

2 t.u.

UNIVERSITY OF CALIFORNIA AT BERKELEY 9

Communication Pattern

A

B

E D

C

Proc 1

Proc 4

Proc 3

Proc 2

Execution Times
A , B, F : 3
C, H : 5

•

•
•

: 6D

: 2G

= Idle

= Send
= Receive

E

D

C
B F

G

H

A

E : 4
G

H

•

F

Proc 1

Proc 2

Proc 3

Proc 4

Proc 5

 DFG “G” Static schedule

B

D

C

B F

G

H

E

D

B

H

EA

CG
F

TST = 9

D

C
F

G

H

E

D

B

H

EA

CG
F

Proc 1

Proc 2
Proc 3

Proc 4

Proc 5

18
repeating pattern

A

UNIVERSITY OF CALIFORNIA AT BERKELEY 10

Ordered Transactions

Proc 1

Proc 2

Proc 3

A
B

C

D
E

G

F

A
B

C
D

E

F

G

H

Proc 1

Proc 2

Proc 3

H

Proc 1
Proc 2
Proc 3

A B
C D E

F G

Send

Receive

Idle time

1 2 4 Estimated total order of occurrence
of inter-processor communications

Proc 0 H

Partial order determined
by data precedences

3

Proc 0 Proc 0

➪

UNIVERSITY OF CALIFORNIA AT BERKELEY 11

Ordered Memory Access Architecture

• Low overhead IPC (3 instruction cycles)

• No need for explicit synchronization

• Performance degrades if execution times vary at run time (or if compile
estimates are bad), computations are correct

SHARED BUS

Local Memory Local Memory

Local MemoryLocal Memory

DSP96002 DSP96002

DSP96002DSP96002

Shared
Memory

Xilinx
(XC3090)

Schedule
Memory

Bus grant
signals

Bus grant
signals

InterfaceInterface
to other
boards or
I/O

I/O
to Host,

UNIVERSITY OF CALIFORNIA AT BERKELEY 12

Choosing a Transaction Order

• Transaction order imposes run time constraints absent in
the unconstrained self-timed schedule
• Partial order due to precedence constraints: ,

• Any total order is a valid transaction order

• Naive transaction order derived from one block of the
schedule: not always the best choice
• Can efficiently determine a transaction order that is “optimal”

2 1» 4 3 1» »

Proc 1
Proc 2
Proc 3

A B
C D E

F G

Send

Receive

Idle time

1 2 4

Proc 0 H

3

➪Estimated
Transaction order

1 3 4

UNIVERSITY OF CALIFORNIA AT BERKELEY 13

Minimizing Synchronization in self-timed schedules

• Self-timed scheduling: each inter-processor
communication point is also asynchronization point
• sender needs to check for buffer overflow

• receiver needs to check for buffer empty

• Compile time analysis of schedule can reduce this
overhead
• Sender synchronizations are eliminated by sizing buffers appropriately

• Remove redundantreceiver synchronizations: synchx2 is redundant

• Perform transformations on the schedule: introduce new synchronization
points

A

B

C

D

E

F

G

H

x1 x2

Proc 1 Proc 2

UNIVERSITY OF CALIFORNIA AT BERKELEY 14

Conclusions

• Discussed mechanism forconstructing parallel schedules
from SDF graphs

• Discussed howcompile time scheduling can be effectively
employed for SDF applications

• Discussedparallel code generation methodology in
Ptolemy

• Presented theordered transactions approach: hardware
architecture optimized for the self-timed strategy
employed in Ptolemy

• Describedminimization of synchronization costs by
means of compile-time analysis

