
1 PROCESS NETWORKS

1 Process Networks

DelayInt DelayIntTkText

Commutator

Distributor

0 1

Produce a stream of 0’s and 1’s.
(from figure 2 in Kahn74)

� concurrent processes

� FIFO communication channels, unbounded capacity

� non-blocking writes, blocking reads

Ptolemy Conference 1 of 12 March 10, 1995

1 PROCESS NETWORKS 1.2 Streams

1.2 Streams

Stream:

X = [x1; x2; : : :] 2 S

? = [] 2 S

~X = fX1; X2; : : : ; Xpg 2 Sp

~? = f?;?; : : : ;?g 2 Sp

Prefix Order:

[x1; x2] v [x1; x2; x3]

~X v ~Y () Xi v Yi 8Xi 2

~X

Ptolemy Conference 3 of 12 March 10, 1995

Dataflow Process Networks
An Introduction to a Mathematical Model of Dataflow

Thomas M. Parks

March 10, 1995

University of California, Berkeley

Ptolemy Conference

parks@eecs.berkeley.edu

http://www.eecs.berkeley.edu/�parks

1 PROCESS NETWORKS 1.1 Kahn’s Formal Model

1.1 Kahn’s Formal Model

� A stream is a sequence of data tokens:

X1 = [x1; x2; x3; : : :],? = empty.

� A process is a functional mapping from

one set of sequences into another:

F(~X) = ~Y

F

X1

3X

2X
1Y

2Y

� blocking reads =) determinate system

Ptolemy Conference 2 of 12 March 10, 1995

1 PROCESS NETWORKS 1.3 Processes

1.3 Processes

Process:

F : Sp
�! Sq

Continuous:

F(uX) = uF(X)

uF(X) = ufF(~X1);F(~X2); : : : g

Monotonic:

~X v ~Y =) F(~X) v F(~Y)

Ptolemy Conference 5 of 12 March 10, 1995

1 PROCESS NETWORKS 1.4 Determinism

1.4 Determinism
� Sp with v forms a complete partial order.

� Fix-point equations ~X = ~F(~X) have

a unique minimal solution when ~F is

continuous.

F1

F2

F3

X
1

X
2

X
3

� Solution to fix-point equations corresponds to histories of

channels.

� Histories will be the same for any correct implementation.

Ptolemy Conference 7 of 12 March 10, 1995

1 PROCESS NETWORKS 1.2 Streams

Increasing Chain:

X =

n
~X1; ~X2; : : :

o

~X1 v

~X2 v � � �

Greatest Lower Bound:

tX v ~Xi 8 ~Xi 2 X

Least Upper Bound:

~Xi v uX 8 ~Xi 2 X

Ptolemy Conference 4 of 12 March 10, 1995

1 PROCESS NETWORKS 1.3 Processes

Sequential: F is continuous and

8 ~X 2 Sp

9Xi 2

~X

such that

F(~X) = F(~Y)

8~Y ; Xi = Yi and ~X v ~Y

sequential =) continuous =) monotonic

Ptolemy Conference 6 of 12 March 10, 1995

2 DATAFLOW PROCESS NETWORKS 2.2 Higher Order Functions

2.2 Higher Order Functions

2.2.1 F = map(f)

map(f)(~R : ~X) = f(~R) : map(f)(~X) ~R 2 Rf

map(f)(~Y) = ~? @~R 2 Rf

~R v ~Y

� f sequential =) F sequential

� f continuous 6=) F continuous

Sequential firing functions produce determinate process networks.

Ptolemy Conference 9 of 12 March 10, 1995

2 DATAFLOW PROCESS NETWORKS 2.2 Higher Order Functions

2.2.2 g = loop(f; N)

loop(f; N)(~R : ~X) = f(~R) : loop(f; N � 1)(~X) ~R 2 Rf

loop(f; N)(~Y) = ~? @~R 2 Rf

~R v ~Y

= ~? N = 0

What are the firing rules of g = loop(f; N) ?

~Rg = ~Rf : ~Rf : � � � ~Rf

Ptolemy Conference 11 of 12 March 10, 1995

2 DATAFLOW PROCESS NETWORKS

2 Dataflow Process Networks
2.1 Firing Rules

f : Sp
�! Sq

R = f~R1; ~R2; : : : ; ~RNg

~R = f[�]; [�]g

T
F

~R1 = f[T]; [�];?g

~R2 = f[F];?; [�]g

Ptolemy Conference 8 of 12 March 10, 1995

2 DATAFLOW PROCESS NETWORKS 2.2 Higher Order Functions

C

D

E

F G

B

A

1

1

1 1

1 1

1
T

F

T

F
1 1

2 2

2x

if T

if F

Loop: (conditionally) repeat an actor to match rates with neighbor

Merge: combine neighboring actors with same rate

Ptolemy Conference 10 of 12 March 10, 1995

2 DATAFLOW PROCESS NETWORKS 2.2 Higher Order Functions

2.2.3 h = merge(f; g)

f

g

R1

R2

merge(f; g)(fR1; R2g) = f(fR1; g(R2)g)

What are the firing rules of h = merge(f; g) ?

Ptolemy Conference 12 of 12 March 10, 1995

