	1 PROCESS NETWORKS
Dataflow Process Networks	1 Process Networks
An Introduction to a Mathematical Model of Dataflow Thomas M. Parks March 10, 1995 University of California, Berkeley Ptolemy Conference parks@eecs.berkeley.edu http://www.eecs.berkeley.edu/~parks	Produce a stream of 0's and 1's. (from figure 2 in Kahn74) I I I I I I I I I I I I I I I I I I I
	 non-blocking writes, blocking reads
	Ptolemy Conference 1 of 12 March 10, 1995
1 PROCESS NETWORKS 1.1 Kahn's Formal Model	1 PROCESS NETWORKS 1.2 Streams
1.1 Kahn's Formal Model	1.2 Streams
 A stream is a sequence of data tokens: 	Stream:
$X_1 = [x_1, x_2, x_3, \dots], \perp =$ empty.	$X = [x_1, x_2, \dots] \in S$
• A process is a functional mapping from X_1 X_2 Y_1 X_2	$\perp = [] \in S$
one set of sequences into another: $X_3 \swarrow \Gamma_2$ $F(\vec{X}) - \vec{V}$	$\vec{X} = \{X_1, X_2, \dots, X_p\} \in S^p$
 blocking reads ⇒ determinate system 	$\vec{\perp} = \{\perp, \perp, \dots, \perp\} \in S^p$
	Prefix Order:
	$\begin{bmatrix} x_1, x_2 \end{bmatrix} \sqsubseteq \begin{bmatrix} x_1, x_2, x_3 \end{bmatrix}$
	$\vec{X} \sqsubseteq \vec{Y} \iff X_i \sqsubseteq Y_i \forall X_i \in \vec{X}$
Ptolemy Conference 2 of 12 March 10, 1995	Ptolemy Conference 3 of 12 March 10, 1995

1.2 Streams

March 10, 1995

1.3 Processes

Increasing Chain:

$$\mathcal{X} = \left\{ \vec{X_1}, \vec{X_2}, \dots \right\}$$

$$\vec{X_1} \sqsubseteq \vec{X_2} \sqsubseteq \cdots$$

Greatest Lower Bound:

$$\Box \mathcal{X} \sqsubseteq \vec{X_i} \qquad \forall \vec{X_i} \in \mathcal{X}$$

Least Upper Bound:

Sequential: F is continuous and

sequential \implies continuous \implies monotonic

Ptolemy Conference

1 PROCESS NETWORKS

$$\vec{X_i} \sqsubseteq \sqcap \mathcal{X} \qquad \forall \vec{X_i} \in \mathcal{X}$$

4 of 12

 $\forall \vec{X} \in S^p \qquad \exists X_i \in \vec{X}$

such that

 $\mathbf{F}(\vec{X}) = \mathbf{F}(\vec{Y})$

 $\forall \vec{Y}, \quad X_i = Y_i \quad \text{and} \quad \vec{X} \sqsubseteq \vec{Y}$

1
 PROCESS NETWORKS

 1.3
 Processes

 Process:

$$F: S^p \longrightarrow S^q$$

 Continuous:

 $F(\sqcap \mathcal{X}) = \sqcap F(\mathcal{X})$
 $\sqcap F(\mathcal{X}) = \sqcap \{F(\vec{X_1}), F(\vec{X_2}), \dots \}$

 Monotonic:

 $\vec{X} \sqsubseteq \vec{Y} \implies F(\vec{X}) \sqsubseteq F(\vec{Y})$

 Ptolemy Conference

 5 of 12

1 PROCESS NETWORKS

1.4 Determinism

- S^p with \sqsubseteq forms a complete partial order.
- Fix-point equations $\vec{X} = \vec{F}(\vec{X})$ have a unique minimal solution when \vec{F} is continuous.
- Solution to fix-point equations corresponds to histories of channels.
- Histories will be the same for any correct implementation.

1.4 Determinism

F3

X

2 DATAFLOW PROCESS NE	ETWORKS	2.2 Higher Order Functions
2.2.3 $h = me$	$\operatorname{erge}(1, g)$	
	f f	
	$R_2 \rightarrow (g)$	
	2	
$merge(f,g)(\{R_1,R_2\}) = f(\{R_1,g(R_2)\})$		
What are the firing rules of $h = m_{args}(f, r)$		
What are the firing rules of $n = merge(1,g)$?		
Ptolemy Conference	12 of 12	March 10, 1995