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1 Process Networks
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Produce a stream of 0’s and 1’s.
(from figure 2 in Kahn74)

� concurrent processes

� FIFO communication channels, unbounded capacity

� non-blocking writes, blocking reads
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1 PROCESS NETWORKS 1.2 Streams

1.2 Streams

Stream:

X = [x1; x2; : : : ] 2 S

? = [ ] 2 S

~X = fX1; X2; : : : ; Xpg 2 Sp

~? = f?;?; : : : ;?g 2 Sp

Prefix Order:

[x1; x2] v [x1; x2; x3]

~X v ~Y () Xi v Yi 8Xi 2

~X
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1 PROCESS NETWORKS 1.1 Kahn’s Formal Model

1.1 Kahn’s Formal Model

� A stream is a sequence of data tokens:

X1 = [x1; x2; x3; : : : ],? = empty.

� A process is a functional mapping from

one set of sequences into another:

F( ~X) = ~Y

F

X1

3X

2X
1Y

2Y

� blocking reads =) determinate system
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1 PROCESS NETWORKS 1.3 Processes

1.3 Processes

Process:

F : Sp
�! Sq

Continuous:

F(uX ) = uF(X )

uF(X ) = ufF( ~X1);F( ~X2); : : : g

Monotonic:

~X v ~Y =) F( ~X) v F(~Y )
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1 PROCESS NETWORKS 1.4 Determinism

1.4 Determinism
� Sp with v forms a complete partial order.

� Fix-point equations ~X = ~F( ~X) have

a unique minimal solution when ~F is

continuous.

F1

F2

F3

X
1

X
2

X
3

� Solution to fix-point equations corresponds to histories of

channels.

� Histories will be the same for any correct implementation.
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1 PROCESS NETWORKS 1.2 Streams

Increasing Chain:

X =

n
~X1; ~X2; : : :

o

~X1 v

~X2 v � � �

Greatest Lower Bound:

tX v ~Xi 8 ~Xi 2 X

Least Upper Bound:

~Xi v uX 8 ~Xi 2 X

Ptolemy Conference 4 of 12 March 10, 1995

1 PROCESS NETWORKS 1.3 Processes

Sequential: F is continuous and

8 ~X 2 Sp

9Xi 2

~X

such that

F( ~X) = F(~Y )

8~Y ; Xi = Yi and ~X v ~Y

sequential =) continuous =) monotonic
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2 DATAFLOW PROCESS NETWORKS 2.2 Higher Order Functions

2.2 Higher Order Functions

2.2.1 F = map(f)

map(f)(~R : ~X) = f(~R) : map(f)( ~X) ~R 2 Rf

map(f)(~Y ) = ~? @~R 2 Rf

~R v ~Y

� f sequential =) F sequential

� f continuous 6=) F continuous

Sequential firing functions produce determinate process networks.
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2 DATAFLOW PROCESS NETWORKS 2.2 Higher Order Functions

2.2.2 g = loop(f; N)

loop(f; N)(~R : ~X) = f(~R) : loop(f; N � 1)( ~X) ~R 2 Rf

loop(f; N)(~Y ) = ~? @~R 2 Rf

~R v ~Y

= ~? N = 0

What are the firing rules of g = loop(f; N) ?

~Rg = ~Rf : ~Rf : � � � ~Rf
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2 DATAFLOW PROCESS NETWORKS

2 Dataflow Process Networks
2.1 Firing Rules

f : Sp
�! Sq

R = f~R1; ~R2; : : : ; ~RNg

~R = f[�]; [�]g

T
F

~R1 = f[T ]; [�];?g

~R2 = f[F ];?; [�]g
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2 DATAFLOW PROCESS NETWORKS 2.2 Higher Order Functions

C

D

E

F G

B

A

1

1

1 1

1 1

1
T

F

T

F
1 1

2 2

2x

if T

if F

Loop: (conditionally) repeat an actor to match rates with neighbor

Merge: combine neighboring actors with same rate
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2 DATAFLOW PROCESS NETWORKS 2.2 Higher Order Functions

2.2.3 h = merge(f; g)

f

g

R1

R2

merge(f; g)(fR1; R2g) = f(fR1; g(R2)g)

What are the firing rules of h = merge(f; g) ?
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