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Problem Statement

Given an acyclic, multirate SDF graph, want a single
appearance schedule  that minimizes the amount of data
needed for buffering.

•  Buffer on every arc in the graph.

•  The size of the buffer is given by the maximum number
of tokens queued on the arc in the schedule.

•  Total buffering cost given by sum of sizes of individual
buffer sizes.

•  Want to find a schedule that minimizes this cost.

Buffering Model:
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Alternative Buffering Models
Alternative #1 : Naive single appearance schedules with
shared buffers.

•  Buffering requirement can be very bad for some graphs.
•  Does not handle delays well.
•  Latency is maximized.
Alternative #2:  Use nested schedules with buffer sharing.

•  More awkward to implement.
•  Cost function is more complicated.
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Well Ordered Graphs
•  A well-ordered graph has only one topological sort (i.e.,

there is a hamiltonian path in the graph).

•  Problem of computing minimum buffer schedule boils
down to computing an optimum nesting of loops.

•  Done via dynamic programming in  time:

where .

•  Note:  or  will mean the repetitions of node .
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Example Well Ordered Graph
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Schedule Buffering cost
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General Acyclic Graphs
•  Any topological sort of an acyclic graph leads to a set of

valid single appearance schedules.

•  An acyclic graph can have an exponential number of
topological sorts in general: a complete  node bipartite
graph has  topological sorts.

•  The problem is to pick the topological sort that leads to
the best nested schedule when nested optimally using
dynamic programming algorithm.
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Two Heuristic Techniques

•  We give two heuristic techniques for finding buffer-
optimal schedules for acyclic graphs:

• First technique is a top-down approach using min-
cuts called Recursive Partitioning by Minimum
Cuts (RPMC).

— Effective for irregular topologies

• Second technique is a bottom-up approach using
clustering called Acyclic Pairwise Grouping of
Adjacent Nodes (APGAN).

— Effective for regular topologies

— Optimal for a class of graphs
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Recursive Partitioning by Min Cuts

Idea: Find a cut of the graph such that
a) All arcs cross the cut in the forward direction.
b) The cut results in fairly even-sized sets.
c) Amount of data crossing the cut is mini-

mized.
Recursively schedule the nodes on the left side of the cut
before nodes on the right side of the cut.
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RPMC (cont’d.)

•  Splitting the graph where the minimum amount of data
is transferred is a greedy approach and is not optimal in
general.

•  Finding the minimum cut such that all of the conditions
a,b, and c are satisfied is itself a difficult problem:

— Methods based on max-flow-min-cut theorem
do not work.

— Graph partitioning when the size of the
partition has to be bounded is NP-complete.

•  Therefore, a heuristic solution is needed.
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A Heuristic for Legal Min Cuts
•  Let  be the set of nodes consisting of  and its

descendents. Let .

•  This forms a cut satisfying condition (a).

•  Perform a local optimization by moving those nodes
from  that reduce the cost into .

•  Do this for all nodes  in the graph.

•  Repeat above steps to generate cuts obtained by letting
 be the set of nodes consisting of  and it

ancestors, and letting .

•  Keep the cut with the lowest cost.

•  Runs in time .
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EXAMPLE
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RPMC Algorithm
•  Find heuristic minimum cut of the graph into sets  and

.
— The top level schedule is given by

where .

•  Continue recursively until all nodes have been
scheduled.

• Post-process resulting schedule by recomputing an
optimum nesting of the loops using dynamic
programming algorithm with the lexical ordering
generated by RPMC.

•  Runs in time  for sparse graphs.
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Acyclic Pairwise Grouping of Nodes

Idea: Develop a loop hierarchy by clustering two adjacent
nodes at each step.

Definition: Clustering means combining two or more nodes
into one hierarchical node.
•  The graph with the hierarchical node instead of the nodes

that were clustered is called the clustered graph.

Definition: A clusterizable pair of nodes is a pair of nodes
that, when clustered, does not cause deadlock.
•  A sufficient condition for clusterizability: Two nodes are

clusterizable if clustering them does not introduce a cycle
in the clustered graph.
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APGAN Algorithm
•  Cluster two nodes that maximize  over

all clusterizable pairs .

•  Continue until only one node is left in the clustered
graph

— This is similar to the Huffman coding algorithm.

•  After constructing cluster hierarchy, retrace steps to
determine the nested schedule.

• Post-process the schedule using dynamic programming
to generate an optimal nesting for the lexical ordering
generated by APGAN.

•  Runs in time  for sparse graphs.
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APGAN in Action
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Cyan nodes are clus-
tered at each step.
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Optimality of APGAN

Definition: The buffer memory lower bound for an arc  is
given by

— This represents the least amount of buffering needed on
this arc in any single appearance schedule.

Definition: A BMLB schedule for an acyclic SDF graph is a
single appearance schedule whose buffering cost is equal to
the sum of the BMLB costs for each arc.

Theorem: The APGAN algorithm will find a BMLB schedule
whenever one exists.
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Mobile Satellite Receiver Example
This example is from [Ritz95]:
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Non-uniform Filterbank Example
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Performance on Practical Examples

Performance of the two heuristics on various acyclic graphs.

System BMUB BMLB APGAN RPMC Average
Random

Graph
size(nodes/

arcs)

Fractional decimation 61 47 47 52 52 26/30

Laplacian pyramid 115 95 99 99 102 12/13

Nonuniform filterbank
(1/3,2/3 splits, 4 channels)

466 85 137 128 172 27/29

Nonuniform filterbank
(1/3,2/3 splits, 6 channels)

4853 224 756 589 1025 43/47

QMF nonuniform-tree filterbank 284 154 160 171 177 42/45

QMF filterbank (one-sided tree) 162 102 108 110 112 20/22

QMF analysis only 248 35 35 35 43 26/25

QMF Tree filterbank (4 channels) 84 46 46 55 53 32/34

QMF Tree filterbank (8 channels) 152 78 78 87 93 44/50

QMF Tree filterbank (16 channels) 400 166 166 200 227 92/106
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Performance on Random Graphs

Performance of the two heuristics on random graphs

RPMC < APGAN 63%

APGAN < RPMC 37%

RPMC < min(2 random) 83%

APGAN < min(2 random) 68%

RPMC < min(4 random) 75%

APGAN < min(4 random) 61%

min(RPMC,APGAN) < min(4 ran-
dom)

87%

RPMC < APGAN by more than 10% 45%

RPMC < APGAN by more than 20% 35%

APGAN < RPMC by more than 10% 23%

APGAN < RPMC by more than 20% 14%
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Conclusion
•  Have presented 3 algorithms for joint code and data

minimization when synthesizing code from SDF graphs.

•  The problem of jointly minimizing code and data boils
down to picking an optimal lexical ordering of the nodes
and generating an optimal looping hierarchy for that
ordering.

•  Dynamic programming algorithm generates an optimum
looping hierarchy for any given lexical ordering.

•  Two heuristics are used to generate lexical orderings:

— RPMC: Does well on some practical examples with
irregular topologies and on random graphs

— APGAN: Does well on a lot of practical examples but
not as well on random graphs. It is optimal for a class
of graphs.


