
1

UNIVERSITY OF CALIFORNIA AT BERKELEY

Combined Code and Data
Minimization Algorithms

March 10, 1995

Mini Conference on Ptolemy

Praveen K. Murthy (UC Berkeley),

Shuvra S. Bhattacharyya (Hitachi America Ltd.),

Edward A. Lee (UC Berkeley)
{murthy,shuvra,eal}@eecs.berkeley.edu

Publications on this material are available on WWW:

http://ptolemy.eecs.berkeley.edu/papers/PganRpmcDppo/

UNIVERSITY OF CALIFORNIA AT BERKELEY

Problem Statement

Given an acyclic, multirate SDF graph, want a single
appearance schedule that minimizes the amount of data
needed for buffering.

• Buffer on every arc in the graph.

• The size of the buffer is given by the maximum number
of tokens queued on the arc in the schedule.

• Total buffering cost given by sum of sizes of individual
buffer sizes.

• Want to find a schedule that minimizes this cost.

Buffering Model:

UNIVERSITY OF CALIFORNIA AT BERKELEY

Alternative Buffering Models
Alternative #1 : Naive single appearance schedules with
shared buffers.

• Buffering requirement can be very bad for some graphs.
• Does not handle delays well.
• Latency is maximized.
Alternative #2: Use nested schedules with buffer sharing.

• More awkward to implement.
• Cost function is more complicated.

A B DC
50 1 100 50 1 25

A (50 B) (100 C) (4 D): Cost = 5000

A (2 (25 (B (2 C))) (2 D)): Cost = 200
UNIVERSITY OF CALIFORNIA AT BERKELEY

Well Ordered Graphs
• A well-ordered graph has only one topological sort (i.e.,

there is a hamiltonian path in the graph).

• Problem of computing minimum buffer schedule boils
down to computing an optimum nesting of loops.

• Done via dynamic programming in time:

where .

• Note: or will mean the repetitions of node .

O n3()

b i j,[] MINi k j<≤ b i k,[] b k 1 j,+[] cij k[]+ +{ }=

cij k[]
rkOk

gcd ri … r j, ,()
------------------------------------=

ru r u() u

UNIVERSITY OF CALIFORNIA AT BERKELEY

Example Well Ordered Graph

A B DC
4 3 1 1 2 3

(9A)(12B)(12C)(8D)

(3(3A)(4BC))(8D)

(3(3A)(4B))(4(3C)(2D))

72

37

30

36 12 24

Repetitions vector .r 9 12 12 8, , ,[] T=

Schedule Buffering cost

UNIVERSITY OF CALIFORNIA AT BERKELEY

General Acyclic Graphs
• Any topological sort of an acyclic graph leads to a set of

valid single appearance schedules.

• An acyclic graph can have an exponential number of
topological sorts in general: a complete node bipartite
graph has topological sorts.

• The problem is to pick the topological sort that leads to
the best nested schedule when nested optimally using
dynamic programming algorithm.

2n
n!() 2

A 3

B

4
C

D
1

4 9

3
4

4
(3 (4 A) (3 (4 B) C)) (16 D): 208

(4 (3 A) (9 B) (4 D)) (9 C): 120

UNIVERSITY OF CALIFORNIA AT BERKELEY

Two Heuristic Techniques

• We give two heuristic techniques for finding buffer-
optimal schedules for acyclic graphs:

• First technique is a top-down approach using min-
cuts called Recursive Partitioning by Minimum
Cuts (RPMC).

— Effective for irregular topologies

• Second technique is a bottom-up approach using
clustering called Acyclic Pairwise Grouping of
Adjacent Nodes (APGAN).

— Effective for regular topologies

— Optimal for a class of graphs

UNIVERSITY OF CALIFORNIA AT BERKELEY

Recursive Partitioning by Min Cuts

Idea: Find a cut of the graph such that
a) All arcs cross the cut in the forward direction.
b) The cut results in fairly even-sized sets.
c) Amount of data crossing the cut is mini-

mized.
Recursively schedule the nodes on the left side of the cut
before nodes on the right side of the cut.

A
C

F

E1

11

10
10

11

1

D
10

B1

VR

VL

UNIVERSITY OF CALIFORNIA AT BERKELEY

RPMC (cont’d.)

• Splitting the graph where the minimum amount of data
is transferred is a greedy approach and is not optimal in
general.

• Finding the minimum cut such that all of the conditions
a,b, and c are satisfied is itself a difficult problem:

— Methods based on max-flow-min-cut theorem
do not work.

— Graph partitioning when the size of the
partition has to be bounded is NP-complete.

• Therefore, a heuristic solution is needed.

UNIVERSITY OF CALIFORNIA AT BERKELEY

A Heuristic for Legal Min Cuts
• Let be the set of nodes consisting of and its

descendents. Let .

• This forms a cut satisfying condition (a).

• Perform a local optimization by moving those nodes
from that reduce the cost into .

• Do this for all nodes in the graph.

• Repeat above steps to generate cuts obtained by letting
 be the set of nodes consisting of and it

ancestors, and letting .

• Keep the cut with the lowest cost.

• Runs in time .

VR u() u
VL V \ VR u()=

VL VR u()
u

VL u() u
VR V \ VL u()=

O V E V
2

V()log•+ 
 

UNIVERSITY OF CALIFORNIA AT BERKELEY

EXAMPLE

A

C

F

E1

10

10
10

10

1

D
10

B1

A

C

F

E1

10

10
10

10

1

D
10

B1

,C{ } desc C()∪
tcos 12=

,C{ } desc C() D{ }∪∪
tcos 11=

UNIVERSITY OF CALIFORNIA AT BERKELEY

RPMC Algorithm
• Find heuristic minimum cut of the graph into sets and

.
— The top level schedule is given by

where .

• Continue recursively until all nodes have been
scheduled.

• Post-process resulting schedule by recomputing an
optimum nesting of the loops using dynamic
programming algorithm with the lexical ordering
generated by RPMC.

• Runs in time for sparse graphs.

VL
VR

S V() q
L

S V
L 

 
 
  q

R
S V

R 
 

 
 = q

i
gcd r v() :v V

i
∈{ } i, L R,= =

O V
3

 
 

UNIVERSITY OF CALIFORNIA AT BERKELEY

Acyclic Pairwise Grouping of Nodes

Idea: Develop a loop hierarchy by clustering two adjacent
nodes at each step.

Definition: Clustering means combining two or more nodes
into one hierarchical node.
• The graph with the hierarchical node instead of the nodes

that were clustered is called the clustered graph.

Definition: A clusterizable pair of nodes is a pair of nodes
that, when clustered, does not cause deadlock.
• A sufficient condition for clusterizability: Two nodes are

clusterizable if clustering them does not introduce a cycle
in the clustered graph.

UNIVERSITY OF CALIFORNIA AT BERKELEY

APGAN Algorithm
• Cluster two nodes that maximize over

all clusterizable pairs .

• Continue until only one node is left in the clustered
graph

— This is similar to the Huffman coding algorithm.

• After constructing cluster hierarchy, retrace steps to
determine the nested schedule.

• Post-process the schedule using dynamic programming
to generate an optimal nesting for the lexical ordering
generated by APGAN.

• Runs in time for sparse graphs.

gcd r A() r B(),{ }
A B,{ }

O V
3

 
 

UNIVERSITY OF CALIFORNIA AT BERKELEY

APGAN in Action
A

D E

1

3

5
4

BC

2

3
1 2

10

1
2

2 D E

6

5
4

W1C
3

1 2

10

1
2

2 D E

10

4

10

1

2

2

W2 10

2

1

20

W2

W3

W4

2 3A() B() 2C()() E 5D()()

2 W1 2C() 
 

 
  E 5D()()

2W2 
  E 5D()()

2W2 
  W3

W4

Cyan nodes are clus-
tered at each step.

UNIVERSITY OF CALIFORNIA AT BERKELEY

Optimality of APGAN

Definition: The buffer memory lower bound for an arc is
given by

— This represents the least amount of buffering needed on
this arc in any single appearance schedule.

Definition: A BMLB schedule for an acyclic SDF graph is a
single appearance schedule whose buffering cost is equal to
the sum of the BMLB costs for each arc.

Theorem: The APGAN algorithm will find a BMLB schedule
whenever one exists.

u v,()

BMLB u v,() r u() prod u v,()
gcd r u() r v(),{ }
--=

UNIVERSITY OF CALIFORNIA AT BERKELEY

Mobile Satellite Receiver Example
This example is from [Ritz95]:

A

D E

B C

F K G

HL

MN

J I

P

S
UV

R

Q

W

T

4

4

11

11

10

10

11
11

10

11

11

10

240240

240 240

240240

BMLB = 1540

APGAN = 1540

RPMC = 2480

Ritz* = 2040

* Ritz gener-
ates a naive
single
appearance
schedule
and uses
the shared
buffer cost.

UNIVERSITY OF CALIFORNIA AT BERKELEY

Non-uniform Filterbank Example

3 1

3 2

3 2

3 1

3 2

3 1

2 3

2 3

1 3

2 3

1 3

1 3
a b

c

d

e

f

g

i

l

m

o

p

n

k

q

r

s
t

u

w
x

v

y z A

j

h

BMLB = 85

RPMC = 128

APGAN = 137

UNIVERSITY OF CALIFORNIA AT BERKELEY

Performance on Practical Examples

Performance of the two heuristics on various acyclic graphs.

System BMUB BMLB APGAN RPMC Average
Random

Graph
size(nodes/

arcs)

Fractional decimation 61 47 47 52 52 26/30

Laplacian pyramid 115 95 99 99 102 12/13

Nonuniform filterbank
(1/3,2/3 splits, 4 channels)

466 85 137 128 172 27/29

Nonuniform filterbank
(1/3,2/3 splits, 6 channels)

4853 224 756 589 1025 43/47

QMF nonuniform-tree filterbank 284 154 160 171 177 42/45

QMF filterbank (one-sided tree) 162 102 108 110 112 20/22

QMF analysis only 248 35 35 35 43 26/25

QMF Tree filterbank (4 channels) 84 46 46 55 53 32/34

QMF Tree filterbank (8 channels) 152 78 78 87 93 44/50

QMF Tree filterbank (16 channels) 400 166 166 200 227 92/106

UNIVERSITY OF CALIFORNIA AT BERKELEY

Performance on Random Graphs

Performance of the two heuristics on random graphs

RPMC < APGAN 63%

APGAN < RPMC 37%

RPMC < min(2 random) 83%

APGAN < min(2 random) 68%

RPMC < min(4 random) 75%

APGAN < min(4 random) 61%

min(RPMC,APGAN) < min(4 ran-
dom)

87%

RPMC < APGAN by more than 10% 45%

RPMC < APGAN by more than 20% 35%

APGAN < RPMC by more than 10% 23%

APGAN < RPMC by more than 20% 14%

UNIVERSITY OF CALIFORNIA AT BERKELEY

Conclusion
• Have presented 3 algorithms for joint code and data

minimization when synthesizing code from SDF graphs.

• The problem of jointly minimizing code and data boils
down to picking an optimal lexical ordering of the nodes
and generating an optimal looping hierarchy for that
ordering.

• Dynamic programming algorithm generates an optimum
looping hierarchy for any given lexical ordering.

• Two heuristics are used to generate lexical orderings:

— RPMC: Does well on some practical examples with
irregular topologies and on random graphs

— APGAN: Does well on a lot of practical examples but
not as well on random graphs. It is optimal for a class
of graphs.

