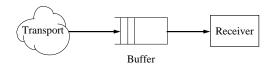
#### Motivation

# Asynchronous Video for Wireless Transport

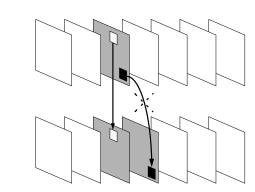
- Network environment
  - Wireless access the likely bottleneck
- Video applications on wireless channel
  - Serious drawbacks to synchronous, frame-by-frame processing of video
  - Advantages to be obtained by allowing delay jitter in transport?
- Proposed solution: asynchronous video coding

## Allen Y. Lao Ptolemy Miniconference

## Department of Electrical Engineering and Computer Sciences University of California at Berkeley

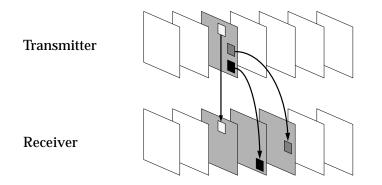

## **Traditional Video Processing**

Transmitter

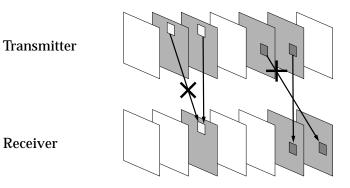

Receiver

- Synchronous, frame-by-frame procedure
- Stringent delay jitter requirement

How About Buffering at Receiver?

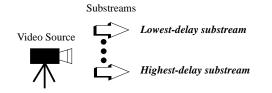



- Can smooth out delay variations at receiver
- But unsuitable for applications with low delay requirement
  - e.g., videoconferencing

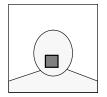



## Asynchronous Video (ASV)



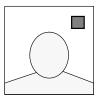



- Wide range of delay requirements permitted
- Delay jitter of multiple frame intervals possible
- Reference: [ReLa94]




- Use frame number as means of ordering information
- Use most current data available for each region
- Throw away out-of-date or "stale" information

## **Substream Abstraction**

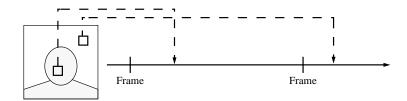



- Application traffic *logically* partitioned among set of substreams
- Quality-of-service (QOS) provisioned for each substream
- Goal: maximize traffic capacity by relaxing delay requirement on certain substreams, maintaining good subjective quality



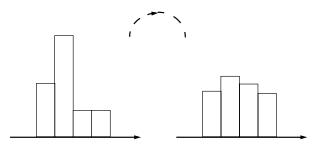
Receiver

**High-motion areas** Low-delay substreams



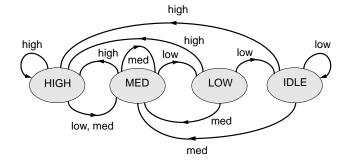

Low-motion areas **High-delay substreams** 

# Mapping Image Areas to Substream by Motion Content


#### Contrast: Asynchronous vs. Synchronous

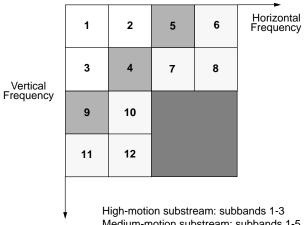





# Asynchronous: Perceptual delay of application determined by lowest-delay substream

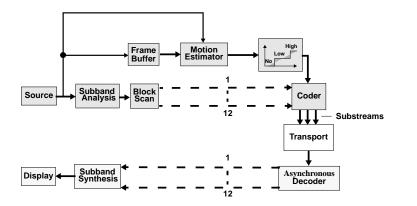
Synchronous: Constrained by highest-delay information




- Smoothing of traffic by network nodes
  - selective transmission and delaying of information
  - more efficient resource utilization

Substream Coder




- states labeled according to motion level associated with substream - arcs labeled according to estimated amount of motion

## Mapping of Substreams to Subbands



Medium-motion substream: subbands 1-3 Medium-motion substream: subbands 1-5, 9 Low-motion substream: subbands 1-12

# **ASV Codec Implementation with Subband Filtering**



## Simulation with Ptolemy

• Speed?

- Sparc 20 (55 MHz)

- Frame size: 320 x 240
- Approximately one frame output per minute
- Domains?

  - Top-level network in DE