
Symbolic Computation in

System Simulation and Design
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| Introduction |

Role of Symbolic Computation

INPUT OUTPUT

Simulation

Numeric Signal - Numeric Signal

Symbolic Description - Symbolic Description

Transformation
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| System Simulation |

Symbolic Parameter Calculation

Truncated Fourier Series Computation
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Fixed Fourier Coe�cient Formula

etc.

distribute collect

MapGr

XMgraph

singen

bus

Add

Gain

buscollect

etc.

SrcGr

parameter_map:
frequency = 2*PI*(2*instance_number-1)/period

parameter_map:
gain = 4/(PI*(2*instance_number-1))

Approximate a Square Wave by a
Finite Number of Sinusoids

Compute Fourier Coe�cient Formula From x(t)
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| System Simulation |

Numeric Parameter Optimization

Optimization of an Existing Filter Design

� Deviation from an ideal magnitude response

� Linear phase response in the passband

� Quality factors of second-order sections

� Peak overshoot in the step response

The Optimization Problem

� Sequential Quadratic Programming

� Di�erentiable objective functions

� Filter speci�cations to di�erentiable constraints
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| System Simulation |

Numeric Parameter Optimization

Code generation

� De�ne the objective function and constraints

� Compute gradients of both symbolically

� Generate source code (C, Fortran, or Matlab)

� Generate main program (Matlab)
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| System Simulation |

Numeric Parameter Optimization

Example: Fourth-Order All-Pole Filter

� Speci�cations:

at wp = 20 rad/sec, �p = 0:21

at ws = 30 rad/sec, �s = 0:31

� Initial �lter is Butterworth

� Pole locations

initial: �8:415� 20:315 �20:315� 8:415

�nal: �7:792� 22:898 �19:562� 0:626

� Objective function

reduced from 1:17 to 4:7� 10�5

� Final gradients of objective function

3:1� 10�5, 4:2� 10�5, �2:3� 10�5, and �5:5� 10�6
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| System Simulation |

Numeric Parameter Optimization

Example: Fourth-Order All-Pole Filter
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- - - dashed lines represent the initial Butterworth �lter

| solid lines represent the �lter optimized for linear phase

response in the passband and for overshoot of the step response
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| System Simulation |

Numeric Parameter Optimization

Example: Fourth-Order All-Pole Filter
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- - - dashed lines represent the initial Butterworth �lter

| solid lines represent the �lter optimized for linear phase

response in the passband and for overshoot of the step response
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| System Simulation |

Numeric Parameter Optimization

Example: Fourth-Order All-Pole Filter
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- - - dashed lines represent the initial Butterworth �lter

| solid lines represent the �lter optimized for linear phase

response in the passband and for overshoot of the step response
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| System Design |

Non-Uniform Filter Bank

x[n]

- "n 2 -h0[n]
- #n 3

- "n 3 - g0[n]
- #n 2

?

-h1[n]
- #n 3

- "n 3 - g1[n]

6

��
��
+ -

x̂[n]

Flow graph of a two-channel non-uniform �lter bank

upperchannel =

Downsample[2,n][

Convolve[n][

g0[n],

Upsample[3,n][

Downsample[3,n][

Convolve[n][h0[n],

Upsample[2,n][x[n]]]]]]]

lowerchannel =

Convolve[n][

g1[n],

Upsample[3,n][

Downsample[3,n][ Convolve[n][h1[n], x[n]]]]]

Algebraic description of the �lter bank
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| System Design |

Non-Uniform Filter Bank

X̂(z) = 1
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Symbolic analysis of input-output relationship

h0[n] = FIR[n, Hold[ReadList["ptolemy/h0", Number]]];

h1[n] = FIR[n, Hold[ReadList["ptolemy/h1", Number]]];

g0[n] = FIR[n, Hold[ReadList["ptolemy/g0", Number]]];

g1[n] = FIR[n, Hold[ReadList["ptolemy/g1", Number]]];

x[n] = Cos[2 Pi n / 3] Sinc[Pi n / 6] / 3;

PtolemySimulation[ upperchannel + lowerchannel,

{n, 1, 100} ] >> "!ptcl"

Transformation of algebraic description to Ptcl
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| System Design |

Evaluating Alternate

Implementations

Rearrangement Rules

� Rules based on interaction between operators

� Based on properties of signals and systems

Cost Functions

� Based on implementation costs

� Require feedback from synthesis tools

Heuristic Searches

� Search through space of alternate implementations
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| System Design |

Multidimensional Signal Processing

Multidimensional Signals De�ned On Grid of Points

Multidimensional Periodic Signals

x[n] = x[n + Nr]

General Multidimensional DFT

X [k] =
X
n

x[n]e�j 2� k
T
N
�1
n

Smith Form Decompositions

N = U�V =) N
�1 = V

�1
�
�1
U
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X [k] =
X
n

x[n]e�j 2� (k
TV �1)��1 (U�1n)

X [k̂] =
X
n̂

x[Un̂]e�j 2� k̂
T
�
�1
n̂
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| System Design |

Multidimensional Rearrangement

Rules

" UL" �L" VL# VM# �M# UM
-------

Cascade in Smith Form

" UL" �L# �M# UM
-----

Simpli�ed cascade if VM = VL

" UL# �M" �L# UM
-----

Reversing order of operations if �M and �L are coprime

-# �MU
�1

L
-" �LU

�1

M
-

Combining operations

Four Equivalent Forms of a

Downsampler and Upsampler in Cascade
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| System Design |

Multidimensional Rearrangement

Rules

s " S s z
n0 s # S s () 0

Up/downsampling by S when the shift vector

n0 62 sublattice(S); i.e., S�1n0 is not an integer vector

s " S s z
n0 s # S s () s z

S�1n0 s

Up/downsampling by S when the shift vector

n0 2 sublattice(S); i.e., S�1n0 is an integer vector

s " L s z
n0 s #M s ()

s z
nL s " L s #M s z

nM s

For any L and M , n0 can be rewritten as n0 = LnL +MnM

Interaction between Upsamplers,

Shifters, and Downsamplers in Cascade
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Conclusion

System Simulation

� Symbolic parameter calculation

� Numeric parameter optimization

System Design

� Symbolic analysis and transformation

� Evaluating alternative implementations

Future Work

� Allow parameters to calculated symbolically

� Explore optimization of other behavioral models

� Encode Synchronous Dataow (SDF) system rewriting in the

Design Methodology Management (DMM) Domain

� Implement Multidimensional SDF system rewriting in DMMDo-

main, esp. non-separable resampling operations
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