

Copyright c©2011
Edward Ashford Lee
All rights reserved

Zeroth Edition, Version 0.02- DRAFT
October 6, 2011

Please cite this book as:

Edward A. Lee,
Concurrent Models of Computation - An Actor-Oriented Approach,

http://Ptolemy.org/books, 2011.

Contents

Acknowledgements v

1 Partially Ordered Sets 1

1.1 Sets . 2
1.2 Relations and Functions . 3
1.3 Sequences . 6

1.4 Partial Orders . 8
1.5 Functions on Posets . 18
1.6 Fixed Points . 21
Exercises . 24

2 Process Networks 27
2.1 Kahn-MacQueen Process Networks . 28

2.2 Semantics of Process Networks . 32
2.3 Execution of Process Networks . 43
2.4 Convergence of Execution to the Semantics 51

2.5 Stable Functions . 53

iii

2.6 Nondeterminism . 54
2.7 Rendezvous . 54
2.8 Summary . 55

Bibliography 57

Notation Index 59

Index 61

iv E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

Acknowledgements

The intellectual roots of this book lie in many of the best known minds in computer
science and mathematics, including Alonzo Church, Gilles Kahn, Stephen Kleene, Alan
Turing, and Dana Scott. I owe a particular debt to Gerard Berry, who showed me the
beauty of the subject in 1994 during a sabbatical that I spent at INRIA in Sophia Antipolis,
France.

My take on the subject of concurrent models of computation has also been greatly in-
fluenced by Albert Benveniste, Manfred Broy, Paul Caspi, Marc Geilen, David Harel,
Tom Henzinger, Axel Jantsch, Hermann Kopetz, Leslie Lamport, Paul Le Guernic, Oded
Maler, Florence Maraninchi, David Messerschmitt, Amir Pnueli, Alberto Sangiovanni-
Vincentelli, Joseph Sifakis, Lothar Thiele, and Kees Vissers.

Several of my own former students and postdocs have also taught me a great deal and
shaped my thinking on this subject, most particularly Joe Buck, Stephen Edwards, Johan
Eker, Joern Janneck, Ben Lickly, Xiaojun Liu, Eleftherios Matsikoudis, Steve Neuendorf-
fer, Tom Parks, John Reekie, Yang Zhao, and all participants in the Ptolemy project.

I gratefully acknowledge contributions and comments on early drafts of this text from the
following people: Shaoyi Cheng, Aaron Culich, Ben Lickly, Xiaojun Liu, James Martin,
Eleftherios Matsikoudis, Adam Megacz, Baruch Sterin, and Reinhard von Hanxleden.

v

Acknowledgements

vi E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

1
Partially Ordered Sets

Contents
1.1 Sets . 2
1.2 Relations and Functions . 3

1.2.1 Restriction and Projection 5
1.3 Sequences . 6

Insight: Exponential Notation for Sets of Functions 7
1.4 Partial Orders . 8

1.4.1 Orders on Tuples . 10
1.4.2 Upper and Lower Bounds 11
1.4.3 Complete Partial Orders . 12
1.4.4 Lattices . 16

1.5 Functions on Posets . 18
1.6 Fixed Points . 21

Sidebar: Fixed Point Theorems . 23
Exercises . 24

This chapter provides mathematical preliminaries used in subsequent chapters to develop
the theory of concurrent systems. It reviews basic ideas and notation in logic, with particu-
lar emphasis on sets, functions, partial orders, and fixed-point theorems. The applications
in subsequent chapters are essential to develop a full understanding of the role that these
mathematical models play in concurrent systems.

1

1.1. SETS

1.1 Sets

In this section, we review the notation for sets. A set is a collection of objects. When
object a is in set A, we write a ∈ A. We define the following sets:

• B = {0,1}, the set of binary digits.

• N = {0,1,2, · · ·}, the set of natural numbers.

• Z = {· · · ,−1,0,1,2, · · ·}, the set of integers.

• R, the set of real numbers.

• R+, the set of non-negative real numbers.

When set A is entirely contained by set B, we say that A is a subset of B and write A⊆ B.
For example, B⊆ N⊆ Z⊆ R. The sets may be equal, so the statement N⊆ N is true, for
example. The powerset of a set A is defined to be the set of all subsets. It is written ℘(A)
or 2A (for a justification of the latter notation, see the sidebar on page 7). The empty set,
written /0, is always a member of the powerset, /0 ∈℘(A).

We define set subtraction as follows,

A\B = {a ∈ A : a /∈ B}
for all sets A and B. This notation is read “the set of elements a from A such that a is not
in B.”

A cartesian product of sets A and B is a set written A×B and defined as follows,

A×B = {(a,b) : a ∈ A,b ∈ B}.
A member of this set (a,b) is called a tuple. This notation is read “the set of tuples (a,b)
such that a is in A and b is in B.” A cartesian product can be formed with three or more
sets, in which case the tuples have three or more elements. For example, we might write
(a,b,c) ∈ A×B×C. A cartesian product of a set A with itself is written A2 = A×A. A
cartesian product of a set A with itself n times, where n ∈ N is written An. A member of
the set An is called an n-tuple. By convention, A0 is a singleton set, or a set with exactly
one element, regardless of the size of A. Specifically, we define A0 = { /0}. Note that A0 is
not itself the empty set. It is a singleton set containing the empty set (for insight into the
rationale for this definition, see the box on page 7).

2 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

1. PARTIALLY ORDERED SETS

1.2 Relations and Functions

A relation from set A to set B is a subset of A×B. A partial function f from set A
to set B is a relation where (a,b) ∈ f and (a,b′) ∈ f imply that b = b′. Such a partial
function is written f : A ⇀ B. A total function or just function f from A to B is a partial
function where for all a ∈ A, there is a b ∈ B such that (a,b) ∈ f . Such a function is
written f : A→ B, and the set A is called its domain and the set B its codomain. Rather
than writing (a,b) ∈ f , we can equivalently write f (a) = b.

Example 1.1: An example of a partial function is f : R ⇀ R defined by f (x) =
√

x
for all x ∈ R+. It is undefined for any x < 0 in its domain R.

A partial function f : A ⇀ B may be defined by an assignment rule, as done in the above
example, where an assignment rule simply explains how to obtain the value of f (a) given
a∈ A. Alternatively, the function may be defined by its graph, which is a subset of A×B.

Example 1.2: The same partial function from the previous example has the graph
f ⊆ R2 given by

f = {(x,y) ∈ R2 : x≥ 0 and y =
√

x} .

Note that we use the same notation f for the function and its graph when it is clear
from context which we are talking about.

The set of all functions f : A→ B is written (A→ B) or BA. The former notation is used
when the exponential notation proves awkward. For a justification of the notation BA, see
the box on page 7.

The function composition of f : A→ B and g : B→ C is written (g ◦ f) : A→ C and
defined by

(g◦ f)(a) = g(f (a))

for any a ∈ A. Note that in the notation (g ◦ f), the function f is applied first. For a
function f : A → A, the composition with itself can be written (f ◦ f) = f 2, or more

E. A. Lee, Concurrent Models of Computation 3

http://Ptolemy.org

1.2. RELATIONS AND FUNCTIONS

generally
(f ◦ f ◦ · · · ◦ f)︸ ︷︷ ︸ = f n

n times

for any n ∈ N. In case n = 1, f 1 = f . For the special case n = 0, the function f 0 is
by convention the identity function, so f 0(a) = a for all a ∈ A. When the domain and
codomain of a function are the same, i.e. f ∈ AA, then f n ∈ AA for all n ∈ N.

For every function f : A→ B, there is an associated function f̂ : ℘(A)→℘(B) defined on
the powerset of A as follows,

∀ A′ ⊆ A, f̂ (A′) = {b ∈ B : ∃ a ∈ A′, f (a) = b}.

We call f̂ the lifted version of f . When there is no ambiguity, we may write the lifted
version of f simply as f rather than f̂ (see problem 4(c) for an example of a situation
where there is ambiguity).

For any A′ ⊆ A, f̂ (A′) is called the image of A′ for the function f . The image f̂ (A) of the
domain is called the range of the function f .

Example 1.3: The image f̂ (R) of the function f : R→ R defined by f (x) = x2 is
R+.

A function f : A→ B is onto (or surjective) if f̂ (A) = B. A function f : A→ B is one-to-
one (or injective) if for all a,a′ ∈ A,

a 6= a′⇒ f (a) 6= f (a′). (1.1)

That is, no two distinct values in the domain yield the same values in the codomain. A
function that is both one-to-one and onto is called a bijection.

Example 1.4: The function f : R→ R defined by f (x) = 2x is a bijection. The
function f : Z→ Z defined by f (x) = 2x is one-to-one, but not onto. The function
f : R2→ R defined by f (x,y) = xy is onto but not one-to-one.

4 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

1. PARTIALLY ORDERED SETS

The previous example underscores the fact that an essential part of the definition of a
function is its domain and codomain.

Proposition 1.1. If f : A→ B is onto, then there is a one-to-one function h : B→ A.

Proof. Let h be defined by h(b) = a where a is any element in A such that f (a) = b.
There must always be at least one such element because f is onto. We can now show
that h is one-to-one. To do this, consider any two elements b,b′ ∈ B where b 6= b′. We
need to show that h(b) 6= h(b′). Assume to the contrary that h(b) = h(b′) = a for some
a ∈ A. But then by the definition of h, f (a) = b and f (a) = b′, which implies b = b′, a
contradiction.

The converse of this proposition is also easy to prove.

Proposition 1.2. If h : B→ A is one-to-one, then there is an onto function f : A→ B.

Any bijection f : A→ B has an inverse f−1 : B→ A defined as follows,

f−1(b) = a ∈ A such that f (a) = b , (1.2)

for all b ∈ B. This function is defined for all b ∈ B because f is onto. And for each b ∈ B
there is a single unique a ∈ A satisfying (1.2) because f is one-to-one. For any bijection
f , its inverse is also a bijection.

1.2.1 Restriction and Projection

Given a function f : A→ B and a subset C ⊆ A, we can define a new function f |C that is
the restriction of f to C. It is defined so that for all x ∈C, f |C(x) = f (x).

Example 1.5: The function f : R→R defined by f (x) = x2 is not one-to-one. But
the function f |R+ is.

E. A. Lee, Concurrent Models of Computation 5

http://Ptolemy.org

1.3. SEQUENCES

Consider an n-tuple a = (a0,a1, · · · ,an−1) ∈ A0×A1× ·· ·×An−1. A projection of this
n-tuple extracts elements of the tuple to create a new tuple. Specifically, let

I = (i0, i1, · · · , im) ∈ {0,1, · · · ,n−1}m

for some m ∈ N\{0}. That is, I is an m-tuple of indexes. Then we define the projection
of a onto I by

πI(a) = (ai0 ,ai1 , · · · ,aim) ∈ Ai0×Ai1×·· ·×Aim .

The projection may be used to permute elements of a tuple, to discard elements, or to
repeat elements.

Projection of a tuple and restriction of a function are related. An n-tuple a ∈ An where
a = (a0,a1, · · · ,an−1) may be considered a function of the form a : {0,1, · · · ,n−1}→ A,
in which case a(0) = a0, a(1) = a1, etc. Projection is similar to restriction of this function,
differing in that restriction, by itself, does not provide the ability to permute, repeat, or
renumber elements. But conceptually, the operations are similar, as illustrated by the
following example.

Example 1.6: Consider a 3-tuple a = (a0,a1,a2) ∈ A3. This is represented by
the function a : {0,1,2} → A. Let I = {1,2}. The projection b = πI(a) = (a1,a2),
which itself can be represented by a function b : {0,1} → A, where b(0) = a1 and
b(1) = a2.

The restriction a|I is not exactly the same function as b, however. The domain of
the first function is {1,2}, whereas the domain of the second is {0,1}. In particular,
a|I(1) = b(0) = a1 and a|I(2) = b(1) = a2.

A projection may lifted just like ordinary functions. Given a set of n-tuples B⊆ A0×A1×
·· ·×An−1 and an m-tuple of indexes I ∈ {0,1, · · · ,n−1}m, the lifted projection is

π̂I(B) = {πI(b) : b ∈ B} .

1.3 Sequences

A tuple (a0,a1) ∈ A2 can be interpreted as a sequence of length 2. The order of elements
in the sequence matters, and is in fact captured by the natural ordering of the natural

6 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

1. PARTIALLY ORDERED SETS

Insight: Exponential Notation for Sets of Functions

The exponential notation BA for the set of functions of form f : A→ B is worth ex-
plaining. Recall that A2 is the cartesian product of set A with itself, and that ℘(A) is
the powerset of A. These two notations are naturally thought of as sets of functions. A
construction attributed to John von Neumann defines the natural numbers as follows,

0 = /0

1 = {0}= { /0}
2 = {0,1}= { /0,{ /0}}
3 = {0,1,2}= { /0,{ /0},{ /0,{ /0}}}
· · ·

With this definition, the powerset 2A is the set of functions mapping the set A into the
set 2. Consider one such function, f ∈ 2A. For each a ∈ A, either f (a) = 0 or f (a) = 1.
If we interpret “0” to mean “nonmember” and “1” to mean “member,” then indeed the
set of functions 2A represents the set of all subsets of A. Each such function defines a
subset.

Similarly, the cartesian product A2 can be interpreted as the set of functions of form
f : 2→ A, or using von Neumann’s numbers, f : {0,1} → A. Consider a tuple a =
(a0,a1) ∈ A2. It is natural to associate with this tuple a function a : {0,1} → A where
a(0) = a0 and a(1) = a1. The argument to the function is the index into the tuple. We
can now interpret the set of functions BA of form f : A→ B as a set of tuples indexed by
the set A instead of by the natural numbers.

Let ω = { /0,{ /0},{ /0,{ /0}}, · · ·} represent the set of von Neumann numbers. This set
is closely related to the set N (see problem 4). Given a set A, it is now natural to interpret
Aω as the set of all infinite sequences of elements from A, the same as AN.

The singleton set A0 can now be interpreted as the set of all functions whose domain
is the empty set and codomain is A. There is exactly one such function (no two such
functions are distinguishable), and that function has an empty graph. Before, we defined
A0 = { /0}. Using von Neumann numbers, A0 = 1, corresponding nicely with the defini-
tion of a zero exponent on ordinary numbers. Moreover, you can think of A0 = { /0} as
the set of all functions with an empty graph.

It is customary in the literature to omit the bold face font for A0, 2A, and A2, writing
instead simply A0, 2A, and A2.

E. A. Lee, Concurrent Models of Computation 7

http://Ptolemy.org

1.4. PARTIAL ORDERS

numbers. The number 0 comes before the number 1. We can generalize this and recognize
that a sequence of elements from set A of length n is an n-tuple in the set An. A0 represents
the set of empty sequences, a singleton set (there is only one empty sequence).

The set of all finite sequences of elements from the set A is written A∗, where we interpret
∗ as a wildcard that can take on any value in N. A member of this set with length n is an
n-tuple. The ∗ operator here is known as the Kleene star (or Kleene operator or Kleene
closure), after American mathematician Stephen Cole Kleene (1909-1994).

The set of infinite sequences of elements from A is written AN or Aω. The set of finite
and infinite sequences is written

A∗∗ = A∗∪AN .

Finite and infinite sequences play an important role in the semantics of concurrent pro-
grams. They can be used, for example, to represent streams of messages sent from one
part of the program to another. Or they can represent successive assignments of values to
a variable. For programs that terminate, finite sequences will be sufficient. For programs
that do not terminate, we need infinite sequences.

1.4 Partial Orders

The notion of order is central to much of the structure in concurrent systems. Examples
of ordering relationships include the usual intuitive ordering of numbers (0 is less than
1, etc.), but also many other concepts. For example, event a causes event b, 3.14159 is a
better approximation of π than 3.14, and John is Sarah’s father are all elements of ordering
relations. For many such ordering relations, not all elements of the sets of interest are
ordered. For example, John and Jane may not be related at all, unlike John and Sarah.
Such partial orders play a central role in mathematical models of concurrent systems.

Definition 1.1. A partial order on a set A is a relation from A to A satisfying the follow-
ing properties. For all a,b,c ∈ A, the relation is

1. reflexive: a≤ a

2. antisymmetric: a≤ b and b≤ a implies that a = b.

3. transitive: a≤ b and b≤ c implies that a≤ c.

8 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

1. PARTIALLY ORDERED SETS

In this definition, we have written the relation using the symbol ≤. Specifically, the
relation is≤, where≤⊆ A×A, and (a0,a1) ∈≤ is equivalently written a0 ≤ a1. The latter
notation is referred to as infix notation.

A partially ordered set or poset is a set A and a partial order relation ≤ on that set. We
can write a poset as a tuple (A,≤), or (A,≤A) if we need to make a distinction between a
partial order ≤A on set A and another partial order ≤B on another set B.

Example 1.7: A set A of sets and the subset relation ⊆ form a poset (A,⊆). The
relation ⊆ is referred to as the subset order.

For sets of sequences, there is a natural partial order relation based on the notion of a
prefix.

Definition 1.2. For a set A and the set of finite and infinite sequences A∗∗ of elements of
A, the prefix order is a relation v from A∗∗ to A∗∗ such that for any s,s′ ∈ A∗∗, sv s′ if
either s is the empty sequence, or for all n ∈N where s(n) is defined, s′(n) is defined and
is equal to s(n).

It is easy to show that (A,v) is a poset by showing that the prefix order conforms with
Definition 1.1.

Given a poset (A,≤) and two elements a,a′ ∈ A, if either a ≤ a′ or a′ ≤ a, then a and a′

are said to be comparable. Otherwise, they are incomparable.

Definition 1.3. A chain C ⊆ A is a subset of a poset (A,≤) where any two members of
the subset are comparable.

A total order is a poset (A,≤) where A itself is a chain.

Example 1.8: The posets (N,≤), (Z,≤), and (R,≤), where ≤ is the ordinary
numeric order are total orders.

E. A. Lee, Concurrent Models of Computation 9

http://Ptolemy.org

1.4. PARTIAL ORDERS

Example 1.9: The powerset 2N is the set of all sets of natural numbers. (2N,⊆),
where ⊆ is the subset order, is a poset but not a total order.

Given a poset (A,≤), we can induce another relation < called the strict partial order
relation defined as follows.

∀ a,a′ ∈ A, a < a′⇔ a≤ a′ and a 6= a′ .

(A,<) is called a strict poset.

1.4.1 Orders on Tuples

Given a poset (A,≤A), the set A2 has a pointwise order defined by

(a0,a1)≤ (a′0,a
′
1)⇔ a0 ≤A a′0 and a1 ≤A a′1,

for all (a0,a1),(a′0,a
′
1) ∈ A2. With this order relation, (A2,≤) is clearly a poset. An

alternative order for A2 is the lexicographic order, defined by

(a0,a1)≤ (a′0,a
′
1)⇔ a0 <A a′0 or (a0 = a′0 and a1 ≤A a′1),

for all (a0,a1),(a′0,a
′
1) ∈ A2.

Both pointwise order and lexicographic order generalize trivially to Am for m > 2. They
also generalize to A∗, AN, and A∗∗.

Example 1.10: Let A = {a,b,c, · · · ,z} be the letters of the alphabet and ≤ be the
usual alphabetical order for those letters. Then A∗ is the set of all finite sequences
of letters, which includes the set of all words. The lexicographic order for A∗ is
called the dictionary order because it gives the order in which words appear in
a dictionary. The dictionary order is a total order, whereas the pointwise order for
this poset would not be. In particular, under the pointwise order, the sequence (a,b)
would be incomparable to the sequence (b,a), whereas under the dictionary order,
the first is less than the second.

10 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

1. PARTIALLY ORDERED SETS

1.4.2 Upper and Lower Bounds

Given a poset (A,≤) and a subset B⊆ A, an upper bound of B, if it exists, is an element
a ∈ A such that for all b ∈ B, b≤ a. A least upper bound or LUB, if it exists, is an upper
bound a such that for all other upper bounds a′ we have a≤ a′. A set may have an upper
bound and no LUB.

Example 1.11: Consider the poset (Q,≤) of rational numbers, where ≤ is the
natural numeric order. Let B⊂Q be the subset of rational numbers whose value is
less than the irrational number π (this relation “less than” is not the ≤ relation in
this poset, since π is not a member of the poset, but we understand the definition
of this subset anyway). In this poset, B has many upper bounds, but no least upper
bound. Its LUB would have to be the greatest rational less than π, and there is no
such greatest rational.

If a set B⊆ A has a least upper bound in the poset (A,≤), then it is said to be joinable in
(A,≤), and the LUB is called the join of B and written

W
B.

Example 1.12: Consider the poset (2N,⊆) of sets of natural numbers under the
subset order. Every subset of B⊆ 2N is joinable and the join is the union of the sets
in B, _

B =
[
b∈B

b .

It is easy to see that this is a LUB. Any other bound must contain at least this union.
It is not accidental that the notation

W
is similar to ∪. This similarity can be very

helpful in getting used to the notation.

Correspondingly, a subset B ∈ A may have a lower bound in the poset (A,≤). This will
be an element a ∈ A such that for all b ∈ B, a ≤ b. The set B may also have a greatest
lower bound or GLB, defined similarly to the LUB. The GLB, if it exists, is called the
meet of B in (A,≤), and is written

V
B.

E. A. Lee, Concurrent Models of Computation 11

http://Ptolemy.org

1.4. PARTIAL ORDERS

Example 1.13: Any subset B as in the previous example has a meet given by^
B =

\
b∈B

b .

Again, it is not accidental that the notation
V

reminds us of ∩.

1.4.3 Complete Partial Orders

A pointed poset (A,≤) is one that has a bottom element, written

⊥A =
^

A ∈ A .

The bottom element is less than or equal to every element in A. When the set is under-
stood, the bottom element may be written simply ⊥.

Definition 1.4. A nonempty subset D⊆ A of poset (A,≤) is a directed set if every pair of
elements in D has an upper bound in D. Equivalently, D is directed if every non-empty
finite subset of D is joinable in D.

Every chain is a directed set. In fact, directed sets can be viewed as generalizations of the
idea of chains.

Definition 1.5. A complete partial order or CPO (A,≤) is a pointed poset where every
directed subset is joinable in A.

CPOs have extremely useful properties and are widely used in computer science to study
semantics. To understand why they are so useful, note first that any finite directed subset
is trivially joinable, by the definition of a directed set. To be a CPO, this property has to
extend to infinite directed subsets. This may seem like a small step, but it is not. Directed
subsets in a CPO may be thought of as being “directed” towards some goal. That goal
is the least upper bound, whose existence is guaranteed by the fact that the set is a CPO.
This LUB is in a sense the “limit” of the directed set. This notion of a limit turns out to
be very powerful and surprisingly widely applicable.

The intuition behind the LUB of a directed set is easiest to understand for a chain C ⊆ A,
which is a particularly simple kind of directed set. In this case, interpreting the LUB as a

12 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

1. PARTIALLY ORDERED SETS

limit of the chain is completely natural. Being able to rely on the existence of this limit
is valuable. Any ordered sequence in a CPO, therefore, has a limit. This is not a trivial
property.

Example 1.14: None of the sets N, Z, R with numeric order is a CPO. Neither
is the set of von Neumann numbers ω under the subset order. Each of these sets is
itself a chain with no least upper bound, so clearly it cannot be that every chain has
a least upper bound. If we augment N with an infinite element ∞, bigger than all
elements in N, then the resulting set N∪{∞} with the (extended) numeric order is
a CPO. Similarly, the set ω∪{ω} is a CPO under the subset order, because every
element of ω is a subset of ω.

The sets considered in the previous example are all totally ordered. For such sets, every
directed subset is a chain. In fact, every subset is a chain. So to determine whether the set
is a CPO, we only need to consider whether every chain has a least upper bound. Some
sets that are not totally ordered also have the property that every directed set is chain.

Example 1.15: Given any set A, the set of finite sequences A∗ of elements from
A with the prefix order v is not a CPO. It is easy to construct a chain of growing
finite sequences that has no upper bound that is itself a finite sequence. However,
the set of finite and infinite sequences A∗∗ is a CPO under the prefix order. To show
this, first note that every directed subset of A∗∗ is a chain (given two sequences that
are both a prefix of a third, one of the two must be a prefix of the other). Thus,
we simply note that given any chain, if the chain is finite, its least upper bound
is its maximal element; if the chain is infinite, its least upper bound is the infinite
sequence defined by the union of the elements of the chain. The notion of limits of
such chains plays a major role in the semantics of concurrent systems.

It turns out that to decide whether any poset is a CPO, it is enough to consider only
whether every chain has a least upper bound. It is not necessary to consider directed sets
that are not chains. This follows from the following alternative definition of a CPO.

E. A. Lee, Concurrent Models of Computation 13

http://Ptolemy.org

1.4. PARTIAL ORDERS

Definition 1.6. A pointed poset (A,≤) is a complete partial order (CPO) if every chain
in A is joinable in A.

This definition captures the intuition every chain has a limit, in the sense of a least upper
bound. To proof that this definition is equivalent to Definition 1.5 appears to be quite
difficult. It seems to require the machinery of ordinals and the axiom of choice and is
beyond the scope of this text. For a discussion, see Davey and Priestly (2002). In this text,
we will use both definitions, though most of the time the second one will prove easier to
use. In the case of the prefix order, every directed set is a chain, so the equivalence of the
two definitions is trivial.

The following proposition enables us to construct more complicated CPOs from simpler
ones.

Proposition 1.3. Given a CPO (A,≤A), (An,≤) is a CPO for any n ∈N, where ≤ is the
pointwise order.

Proof. First note that if n = 0, the proposition is trivial since the set has only one
element, and every finite pointed poset is a CPO. It is also trivial for n = 1. For n > 1,
we use definition 1.6 and consider only chains in An. Denote such a chain by

C = {(a1,1,a1,2, · · · ,a1,n),(a2,1,a2,2, · · · ,a2,n), · · ·(ai,1,ai,2, · · · ,ai,n), · · ·}

where i ≤ j implies that ai,m ≤A a j,m for all m ∈ {1, · · · ,n}. Let A j =
{a1, j,a2, j, · · · ,ai, j, · · ·} for j = 1,2, · · · . It is easy to see then that_

C = (
_

A1,
_

A2, · · · ,
_

An) .

Hence, the chain has a LUB. Since every such chain has a LUB, the poset is a CPO.

The following proposition follows trivially using the same proof technique, and proves
quite useful.

Proposition 1.4. Given a CPO (A,≤A) and any set B, (AB,≤) is a CPO, where ≤ is the
pointwise order.

The following example illustrates how we can pull together several of these ideas to begin
addressing questions of program semantics.

14 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

1. PARTIALLY ORDERED SETS

Example 1.16: Let B be a set of variable names in a computer program and
let A be the set of values that those variables can take on. During the (possibly
nonterminating) execution of the program, a variable b ∈ B takes on a (possibly
infinite) sequence of values. The sequence of values is a member of the set A∗∗. We
can define the semantics of the program to be a function f : B→ A∗∗ that for every
b ∈ B yields a sequence f (b) ∈ A∗∗. Since A∗∗ is a CPO under the prefix order, by
proposition 1.4 (A∗∗)B is also a CPO under the pointwise prefix order.

Let a partial execution of the program be a function fi : B→ A∗ for i∈N. A partial
execution always yields a finite sequence. If the execution of the program can be
described as a chain of such partial executions (in the pointwise prefix order), then
the limit of this chain in A∗∗ can be taken to be the semantics f .

Describing an execution of program in this way is natural for many programs. Con-
sider a determinate sequential program that updates values for variables as it exe-
cutes. Each such update appends a new value to the end of the sequence consisting
of the previous values of that variable. The sequence of growing sequences of val-
ues of variables is clearly a chain in the prefix order.

Any set can be turned into a CPO by choosing a flat order relation. Given an arbitrary
set A, augment the set with one additional element that serves as the bottom element.
Specifically, let B be the augmented set and the one additional element be ⊥B, so B =
A∪{⊥B}. Define a poset (B,≤), where the order relation is such that⊥B ≤ a for all a∈ A
and a≤ a′⇒ a = a′ for all a,a′ ∈ A. This is called a flat partial order. Any two distinct
elements a and a′ in A are incomparable. Moreover, every directed subset of B is a chain
with either one or two elements. Trivially, each such chain has an upper bound. Hence,
(B,≤) is a CPO. In this CPO, all chains are finite, so the notion of a limit of a chain is
rather trivial.

Example 1.17: An example of a flat partial order is illustrated in figure 1.1(a),
where A = {a1,a2} and B = {⊥B,a1,a2}. Diagrams of that sort are known as Hasse
diagrams. In a Hasse diagram, elements of the poset are placed above one another
with line segments indicating the order relation. If two elements a and b are joined
by a line segment, and a is below b in the diagram, then a < b.

E. A. Lee, Concurrent Models of Computation 15

http://Ptolemy.org

1.4. PARTIAL ORDERS

a1 a2

(a)
(b)

(⊥B ,⊥B)

(a1,⊥B) (a2,⊥B)(⊥B , a1) (⊥B , a2)

(a1, a1) (a1, a2) (a2, a1) (a2, a2)

⊥B

Figure 1.1: (a) Flat partial order for B = {⊥B,a1,a2}. (b) Pointwise order on B2.

Example 1.18: Suppose that (B,≤B) is the flat partial order of the previous ex-
ample. Then (B2,≤), where ≤ is the pointwise order, is illustrated by the Hasse
diagram in figure 1.1(b).

1.4.4 Lattices

Some partial orders have more structure than we have so far assumed.

Definition 1.7. A lattice is a poset (A,≤) where any two elements a,a′ ∈A have a unique
greatest lower bound a

V
a′ ∈ A and a unique least upper bound a

W
a′ ∈ A.

Example 1.19: Given a set of sets A, the poset (A,⊆) formed with the subset
order is a lattice. Given two sets a,a′ ∈ A, their GLB is their intersection a∩a′, and
their LUB is the union a∪ a′. If A is a powerset, then this lattice is known as the
powerset lattice.

16 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

1. PARTIALLY ORDERED SETS

Example 1.20: The posets in figure 1.1 are not lattices. For example, in figure
1.1(a), the subset a1,a2 has no upper bound, much less a least upper bound. Adding
an artificial top element (commonly denoted >), would change these posets so that
they both become lattices.

Some posets have some of the structure of lattices, but not all of it. A lower semilattice
or meet semilattice is a poset (A,≤) where any two elements a,a′ ∈ A have a unique
greatest lower bound a

V
a′ ∈ A.

Example 1.21: The posets in figure 1.1 are lower semilattices. You can exhaus-
tively verify that for any pair of elements, there is a single unique GLB.

Example 1.22: The poset (A∗∗,v) of finite and infinite sequences from the set A is
a lower semilattice under the prefix order. Any two sequences in A∗∗ have a unique
common prefix (which ma y be the empty sequence).

An upper semilattice or join semilattice is dually defined as a poset (A,≤) where any
two elements a,a′ ∈ A have a unique least upper bound a

W
a′ ∈ A.

A complete lattice is a poset (A,≤) where every subset (not just every pair elements)
has a LUB and GLB (and similarly for complete lower semilattice or complete upper
semilattice). A complete lattice is also a CPO.

Example 1.23: The powerset 2R of the reals with the subset order, (2R,⊆) is a
complete lattice. Given any set of sets of reals, the GLB is the intersection of the
sets and the LUB is the union.

E. A. Lee, Concurrent Models of Computation 17

http://Ptolemy.org

1.5. FUNCTIONS ON POSETS

1.5 Functions on Posets

A function from a poset to a poset may preserve order.

Definition 1.8. A function f : A→ B from poset (A,≤A) to poset (B,≤B) is monotonic
or order preserving if a≤A a′ =⇒ f (a)≤B f (a′).

Example 1.24: Consider a function f : A∗∗→ A∗∗ that is monotonic in the prefix
order. This means that if a sequence s is a prefix of another s′, i.e. that sv s′, then
f (s) v f (s′). Functions with this property have many special qualities. The prop-
erty implies that it is “safe” to evaluate the function with partial information about
its input. Given only a prefix of what the input will eventually be, we can nonethe-
less evaluate the function using only the prefix, and we will get partial information
(a prefix) about what the output will eventually be when the input is complete.

A function f : A→ B is an order embedding if

a≤A a′ ⇐⇒ f (a)≤B f (a′) . (1.3)

Note that an order embedding is monotonic, but a monotonic function is not necessarily
an order embedding. An order embedding is also necessarily one-to-one (see exercise
3). An order embedding f : A→ B that is onto is called an order isomorphism from
A to B. Since by exercise 3 it is also one-to-one, an order isomorphism is necessarily a
bijection. Two posets are order isomorphic if there is an order isomorphism from one to
the other. Order isomorphism is a rather strong relationship between posets. The posets
are essentially the same, in that one can be obtained from the other by just renaming the
elements.

Example 1.25: Let A = {0,1,2, · · · ,255} ⊂ N and B = B8. Here, B is the set of
all sequences of 8 binary digits. Let f : B→ A be a function that for each b ∈ B
yields f (b)∈A that is the number represented by b when b is interpreted as a binary
unsigned number with the high-order bit first. Assume B is ordered so that 0 < 1
and that B is endowed with a lexicographic order. Assume A is endowed with the
usual numeric order. Then f is an order isomorphism.

18 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

1. PARTIALLY ORDERED SETS

If we are considering functions on CPOs rather than arbitrary posets, then an even more
useful property than monotonicity is continuity.

Definition 1.9. A function f : A→ B from CPO (A,≤A) to CPO (B,≤B) is continuous
if for all chains C ⊆ A,

f (
_

C) =
_

f̂ (C) ,

where f̂ is the lifted version of f .

The set of all continuous functions from A to B is denoted [A→ B], and is obviously a
subset of the set BA of all functions from A to B.

Proposition 1.5. Every continuous function f : A→ B, where (A,≤A) and (B,≤B) are
CPOs, is monotonic.

Proof. Consider any a,a′ ∈A where a≤ a′. Let C = {a,a′}, a chain. Note that
W

C = a′.
Since f is continuous, we know that_

f̂ (C) =
_
{ f (a), f (a′)}= f (

_
C) = f (a′) .

Hence, f (a)≤ f (a′), so the function is monotonic.

Not every monotonic function is continuous however.

Example 1.26: Consider the CPO (A,≤), where A = N∪{∞} and≤ is the numeric
order. Let f : A→ A be given by

f (a) =
{

1 if a 6= ∞

2 otherwise

This function is obviously monotonic. But it is not continuous. To see that, let C =
N and note that

W
C = ∞. Hence, f (

W
C) = 2. However, f̂ (C) = {1}, because every

element of C is finite. Hence,
W

f̂ (C) = 1 6= 2. So the function is not continuous.

The following proposition specializes proposition 1.4 to continuous functions.

E. A. Lee, Concurrent Models of Computation 19

http://Ptolemy.org

1.5. FUNCTIONS ON POSETS

Proposition 1.6. Given two CPOs (A,≤A) and (B,≤B), let [B→ A] ⊂ AB be the set of
all continuous functions from B to A. Then ([B→ A],≤) is a CPO under the pointwise
order ≤.

Proof. First we need to show that [B→ A] has a bottom element. This is easy. The
bottom element is a function g ∈ [B→ A] where for all b ∈ B, g(b) = ⊥. This function
is obviously continuous and total, and hence is in [B→ A].

Second, we need to show that any chain of functions in [B→ A] has a LUB and that the
LUB is continuous. Consider a chain of functions

C = { f1, f2, ...} ⊂ [B→ A].

Since each of these functions is continuous (and hence monotonic), then for any b ∈ B,
the following set is also a chain,

C′b = { f1(b), f2(b), ...} ⊂ A.

Since A is a CPO, this set has a LUB. Define the function g : B→ A such that for all
b ∈ B,

g(b) =
_

C′b.

Then in the pointwise order, it must be that

g =
_

C =
_
{ f1, f2, ...}.

It remains to show that g is in [B→ A]. To show this, we must show that it is continuous.
We must show that for all chains D⊂ B,

g(
_

D) =
_

ĝ(D).

Writing the elements of D = {d1,d2, ...}, observe that_
ĝ(D) =

_
{g(d1),g(d2), ...}

=
_
{

_
{ f1(d1), f2(d1), ...},

_
{ f1(d2), f2(d2), ...}...}

=
_
{

_
{ f1(d1), f1(d2), ...},

_
{ f2(d1), f2(d2), ...}...}

=
_
{

_
f̂1(D),

_
f̂2(D), ...}

=
_
{ f1(

_
D), f2(

_
D), ...}

= g(
_

D).

20 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

1. PARTIALLY ORDERED SETS

Note that the above implicitly uses the axiom of choice, which states that given a set of
sets, one can construct a new set by collecting one element from each of the sets in the
set of sets.

1.6 Fixed Points

Given a function f : A → A, if there is value a ∈ A such that f (a) = a, that value is
called a fixed point. Existence and uniqueness of fixed point points play a central
role in the semantics of programs. Existence of a fixed point will be interpreted as “the
program has a meaning.” Uniqueness will be interpreted as “the program has no more
than one meaning.” For functions that have multiple fixed points, we are often interested
in the least fixed point, which is a fixed point a ∈ A such that for any other fixed point
a′ ∈ A, a≤ a′. The following proposition assures the existence and uniqueness of such a
least fixed point for continuous functions, and moreover gives a constructive procedure to
determine that least fixed point.

Proposition 1.7. Kleene fixed-point theorem. For any monotonic function f : A→ A
on CPO (A,≤), let

C = { f n(⊥) : n ∈ N} .

Then if
W

C = f (
W

C),
W

C is the least fixed point of f . Moreover, if f is also continuous,
then

W
C = f (

W
C).

Proof. The first part of this theorem does not require that f be continuous, but only that
it be monotonic. Suppose

W
C = f (

W
C). This is a fixed point. Let a be any other fixed

point, i.e. f (a) = a. We can show that
W

C ≤ a, and hence
W

C is the least fixed point.
First, observe that ⊥ ≤ a. Since f is monotonic, this implies that f (⊥) ≤ f (a) = a.
Again, since f is monotonic, this implies that f (f (⊥))≤ f (f (a)) = f (a) = a. Contin-
uing in this fashion, for any n ∈ N,

f n(⊥)≤ f n(a) = a .

Hence, a is an upper bound of C. Since
W

C is the least upper bound of C, it follows thatW
C ≤ a, and hence

W
C is the least fixed point of f .

E. A. Lee, Concurrent Models of Computation 21

http://Ptolemy.org

1.6. FIXED POINTS

For the second part of this theorem, we require that f be continuous, and not just mono-
tonic. First, we observe that C is a chain in the CPO (A,≤). To see that, note that
⊥≤ f (⊥). Since f is monotonic, this implies that f (⊥)≤ f (f (⊥)). Continuing, we see
that for all n ∈ N, f n(⊥) ≤ f n+1(⊥), so C is a chain. Since C is a chain, it has a LUBW

C.

Next note that f̂ (C)∪{⊥}=C. Moreover,
W

(f̂ (C)∪{⊥}) =
W

f̂ (C) (an additional⊥ in
a chain will not change its least upper bound). Combining these two facts, we conclude
that

W
f̂ (C) =

W
C. But since f continuous, we also know that

W
f̂ (C) = f (

W
C). Hence,

f (
W

C) =
W

C, and hence
W

C is a fixed point.

This theorem has profound consequences. It states that for a continuous function f , the
least fixed point of this function can be found by first evaluating f (⊥), then f (f (⊥)),
then f 3(⊥), etc. The result of this sequence of evaluations is a chain in A, and since A is a
CPO, this chain has a limit. That limit is the least fixed point of the function. Applications
of this theorem are scattered throughout the text.

22 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

1. PARTIALLY ORDERED SETS

Sidebar: Fixed Point Theorems

Proposition 1.7 is a variant of the Kleene
fixed-point theorem, named after American
mathematician Stephen Cole Kleene (1909–
1994). The ascending chain C = { f n(⊥) : n ∈
N} is known as the Kleene chain of the function
f .

The Kleene fixed-point theorem is often at-
tributed to Alfred Tarski, (1901–1983), a Polish-
American logician and mathematician and a
professor of mathematics at the University of
California, Berkeley. Tarski’s fixed-point the-
orem is similar to the Kleene fixed-point the-
orem, but in its original statement, it is about
monotone functions on complete lattices. Be-
cause of this attribution, techniques used in
computer science that are based on fixed-point
theorems are often called Tarskian.

Another well-known theorem in this family is
the KnasterTarski fixed-point theorem, devel-
oped earlier by Tarski and Bronislaw Knaster.
This theorem is a special case of Tarski’s fixed-
point theorem that applies to the powerset lat-
tice.

Stephen Cole Kleene (1909-1994).
Photo by Konrad Jacobs, Erlangen,
copyright (1978) MFO, Mathema-
tisches Forschungsinstitut Oberwol-
fach, licensed under the Creative
Commons Attribution-Share Alike
2.0 Germany license.

E. A. Lee, Concurrent Models of Computation 23

http://Ptolemy.org

EXERCISES

Exercises

1. This problem explores properties of onto and one-to-one functions.

(a) Show that if f : A→ B and g : B→C are onto, then (g◦ f) : A→C is onto.
(b) Show that if f : A→ B is one-to-one and g : B→ C is one-to-one, then (g ◦

f) : A→C is one-to-one.

2. Suppose A is some set and S = A∗∗ is the set of finite and infinite sequences of
elements of A. This exercise explores some of the properties of the CPO Sn with
the pointwise prefix order, for some non-negative integer n.

(a) Show that any two elements a,b ∈ Sn that have an upper bound have a least
upper bound.

(b) Let U ⊂ Sn be such that no two distinct elements of U are joinable. Prove that
for all s ∈ Sn there is at most one u ∈U such that uv s.

(c) Given s ∈ Sn, suppose that Q(s)⊂ Sn is a joinable set where for all q ∈ Q(s),
qv s. Then show that there is an s′ such that s = (

W
Q(s)).s′, where the period

operator specifies concatenation of sequences.

3. For two posets A and B:

(a) Show that if f : A→ B is an order embedding, then f is one-to-one.
(b) Show that if f : A→ B is an order isomorphism, then there is an order isomor-

phism g : B→ A.

4. Let ω = { /0,{ /0},{ /0,{ /0}}, · · ·} be the von Neumann numbers as defined on page 7.
This problem explores the relationship between this set and N.

(a) Let f : ω→ N be defined by

f (x) = |x|, ∀ x ∈ ω .

That is, f (x) is the size of the set x. Show that f is a bijection.
(b) Let (ω,⊆) and (N,≤) be posets, where ⊆ is the usual subset order and ≤ is

the usual numeric order. Show that these posets are order isomorphic.
(c) The lifted version of the function f in part (a) is written f̂ . What is the value

of f̂ ({ /0,{ /0}})? What is the value of f ({ /0,{ /0}})? Note that on page 4 it is
noted that when there is no ambiguity, f̂ may be written simply f . For this
function, is there such ambiguity?

24 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

1. PARTIALLY ORDERED SETS

5. Classify each of the following as a partial order relation, a total order relation, or
neither. State whether it is a CPO.

(a) The set A = seconds, grams, meters, pounds, yards of units and a relation
R defined by (a,a′) ∈ A if a can be converted to a′ by scaling by a unitless
constant.

(b) The set D of all countable (including finite) subsets of R, ordered by the subset
order. Hint: It may be easier to use Definition 1.5 for a CPO, rather than
Definition 1.6.

(c) The set {1/n | n ∈N}∪{0}, ordered by the natural numeric order (where 1/0
is interpreted as ∞).

(d) The set {1/n | n ∈N}, ordered by the reverse numeric order (where again 1/0
is interpreted as ∞).

6. State whether each of the following posets is a CPO, and also where it is a lattice,
lower semilattice, or upper semilattice. If you do not have enough information to
determine whether this is a CPO or a lattice, then state this.

(a) The set A = [0,1)⊆ R under the numeric order, where [0,1) = {x ∈ R : 0≤
x < 1}.

(b) The set A = [0,1]⊆ R under the numeric order, where [0,1] = {x ∈ R : 0≤
x≤ 1}.

(c) The set A = {x ∈Q : 0≤ x≤ 1} under the numeric order.

(d) A pointed poset (A,≤) where every directed subset is finite.

(e) A set A where every directed subset is a chain.

7. Assume two CPOs (A,≤) and (B,≤). Consider a poset (A×B,≤) where the order
is the lexicographic order.

(a) Show that (A×B,≤) is a CPO.

(b) Suppose that A = T ∗∗A , B = T ∗∗B , and both CPOs use the prefix order, for arbi-
trary sets TA and TB. Suppose that a ∈ TA and b1,b2 ∈ TB. Consider the set of
sequences

C = {((a),(b1)),((a,a),(b2)),((a,a,a),(b1)), ...}
Under the lexicographic order, this is a chain. Find its LUB.

E. A. Lee, Concurrent Models of Computation 25

http://Ptolemy.org

EXERCISES

26 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2
Process Networks

Contents
2.1 Kahn-MacQueen Process Networks 28
2.2 Semantics of Process Networks . 32

Historical Notes: Process Networks 33
2.2.1 Least Fixed Point Semantics 34
2.2.2 Monotonic and Continuous Functions 38

2.3 Execution of Process Networks . 43
2.3.1 Turing Completeness of Process Networks 47
2.3.2 Effective Execution . 47

2.4 Convergence of Execution to the Semantics 51
2.5 Stable Functions . 53
2.6 Nondeterminism . 54
2.7 Rendezvous . 54

Sidebar: Limit of a Sequence of Real Numbers 54
2.8 Summary . 55

A Kahn process network (KPN) is a concurrent composition of sequential processes
that communicate using a particular form of message passing. A key property of these
networks is that, despite the concurrency, they are assured of being determinate, in the
sense that a KPN defines a unique sequence of messages on each communication chan-
nel between processes. That is, the messages that are communicated do not depend on
the scheduling of the sequential processes. This chapter develops the theory behind such

27

2.1. KAHN-MACQUEEN PROCESS NETWORKS

Figure 2.1: Example of a process network.

networks, explaining why they are determinate, and discussing constraints that an execu-
tion engine must satisfy to execute them correctly. For the historical background on this
model of computation, see the sidebar on page 33. For a discussion of the practical use of
process networks, see Ptolemaeus (2012).

2.1 Kahn-MacQueen Process Networks

A process network (PN) is a collection of components called processes or actors, each
representing a sequential, step-by-step procedure. A, B, and C in Figure 2.1 depict pro-
cesses as rectangles. A process may have private state (variables that are invisible to
other processes). The steps in its procedure may manipulate its state, send messages to
processes (including possibly itself), or receive messages from processes (again including
possibly itself).

A process sends and receives messages via named input or output ports. In Figure 2.1,
p1, p2, and p3 are input ports, and p4, p5, and p6 are output ports. An output port may
be connected to an input port via a channel that carries a sequence of messages. Each
message is called a token, and a sequence of tokens is called a signal. In Figure 2.1, s1,
s2, and s3 represent signals. A signal may consist of a finite or infinite sequence of tokens.

A key assumption in process networks is that tokens are delivered to the destination input
port reliably and in order. The channel will buffer tokens for later delivery to the receiving
process, and it will never lose tokens. A process can always send a token. It does not need
to wait for the recipient to be ready to receive.

28 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

We begin with a special case of process networks that is easier to understand than the gen-
eral case. This special case was introduced by Kahn and MacQueen (1977), and has been
the subject of considerable study ever since. A Kahn-MacQueen network is a process
network with blocking reads. This means that the only mechanism that a process has to
receive a token is to attempt to read a token from an input port; that attempt blocks exe-
cution of the process if there is no available input token. The process will remain blocked
until a token is available. In particular, a process cannot determine a priori whether a
token is available. The only operation it has available is a blocking read.

A Kahn-MacQueen process is a program in an imperative language augmented with a
blocking read statement and nonblocking write statement that reference the input and
output ports of the process. Here, we describe Kahn-MacQueen processes using a C-like
pseudo language that has structured control statements like while and if-then-else,
plus statements like

t = read(p);

which performs a blocking read on input port p and returns a token t, and

write(p, t);

which writes the token t to port p. The read procedure call does not return until there is
a token available at port p. The write statement returns immediately. Our language is a
pseudo language in that we do not fully define it, and we omit important details like data
types.

Example 2.1: Suppose that A in Figure 2.1 executes the following Kahn-
MacQueen procedure,

1 write(p5, 0);
2 while(true) {
3 t = read(p1);
4 write(p5, t);
5 }

This procedure first produces an output token with value 0 and then enters an infi-
nite loop where it reads an input token and sends it to the output port. If the input
is a sequence tokens (1,2,3), for example, then the output will be (0,1,2,3).

E. A. Lee, Concurrent Models of Computation 29

http://Ptolemy.org

2.1. KAHN-MACQUEEN PROCESS NETWORKS

An actor with this behavior is called a unit delay because the input tokens appear at
the output delayed by one step in the sequence. In practice, the value of the initial
output (0 in this case) would typically be a parameter of the actor rather than a
built-in constant.

Let a.b refer to the concatenation of sequences a and b. That is, a.b is a sequence with
prefix a followed by b. If a is infinite, then a.b = a. Using this notation, the process of
Example 2.1 defines its output sequence as a function of its input sequence.

Example 2.2: If the input to the process of Example 2.1 is a sequence denoted by
b, then the output is A(b) = (0).b.

We can use the definition of actor A from Example 2.1 to build a complete process network
in Figure 2.1.

Example 2.3: Suppose that B executes the following procedure,

1 while(true) {
2 t2 = read(p2);
3 t3 = read(p3);
4 write(p4, t2+t3);
5 }

Suppose further that C executes the following procedure,

1 while(true) {
2 write(p6, 1);
3 }

An execution of the process network in Figure 2.1 yields the following infinite
sequences:

s1 = (1,2,3,4, · · ·)
s2 = (0,1,2,3, · · ·)
s3 = (1,1,1,1, · · ·)

30 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

In the previous example, an execution of the process network yields infinite sequences.
This is not always the case.

Example 2.4: Suppose that instead of the unit delay given in Example 2.1, A in
Figure 2.1 executes the following Kahn-MacQueen procedure,

1 while(true) {
2 t = read(p1);
3 write(p5, t);
4 }

Such an actor is called an identity actor, because the output sequence is the same
as the input sequence. An execution of the resulting process network yields

s1 = ⊥
s2 = ⊥
s3 = (1,1,1,1, · · ·)

where ⊥ is the empty sequence. Processes A and B both block immediately at-
tempting to read a token provided by the other. Process C, on the other hand, is
able to execute and produce an infinite sequence of outputs. Since the semantics of
process networks requires that tokens on channels not be lost, the tokens produced
by C must be stored until they are consumed by B. In this case, however, they will
never be consumed by B, and eventually, any execution platform will run out of
memory to store the tokens.

The previous example illustrates two phenomena that can occur with process networks.
The first is deadlock, where the actors on a directed cycle of the network are blocked
waiting for tokens for each other. In this case, we have a local deadlock, because only
part of the process network is deadlocked. In particular, C is not blocked.

The second phenomenon illustrated by this example is unbounded memory. This pro-
cess network cannot correctly execute without an unbounded amount of memory for stor-
ing unconsumed tokens.

We will see below that, in general, whether a Kahn-MacQueen process network deadlocks
is undecidable, even if we constrain the actors to a few very simple primitive ones. It is

E. A. Lee, Concurrent Models of Computation 31

http://Ptolemy.org

2.2. SEMANTICS OF PROCESS NETWORKS

also undecidable whether such a process network can be executed with bounded memory.
These two limitations are actually a consequence of the rich expressiveness of the model
of computation. We will see that a very few primitive actors are sufficient to make the
model of computation Turing complete, which means that it can describe every effectively
computable function.

2.2 Semantics of Process Networks

Example 2.2 suggests that a Kahn-MacQueen process can be defined as a function that
maps input sequences to output sequences. Consider an actor with a single input port and
single output port. The data type of a port p is a set Tp of token values that the port
consumes or produces. The set T ∗∗p is the set of finite and infinite sequences of tokens of
type Tp (see Chapter 1). An actor is therefore a function defined on such sequences.

Example 2.5: Suppose that in Example 2.2, the input and output data types are
T = N, the natural numbers. Then the unit delay is a function of form

A : N∗∗→ N∗∗

where for all b ∈ N∗∗,
A(b) = (0).b.

As we pointed out before, normally the initial output 0 would be a parameter of the
actor rather than a built-in constant.

In general, the semantics of a program is its meaning. In the case of process networks,
the semantics is the signals defined by the network. Each signal is a finite or infinite
sequence of tokens. In this section, we will show that if processes define functions that
satisfy a particular constraint (they are continuous), then the semantics of the network is
unique (i.e., the network defines exactly one sequence of tokens for each signal), and we
can give a constructive procedure for building the signals defined by the network (i.e., a
mechanism for executing the network). For this section, you will want to have mastered
the material on the prefix order and complete partial orders, in Chapter 1.

32 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

Historical Notes: Process Networks

The notion of concurrent processes interact-
ing by sending messages is rooted in Conway’s
coroutines (Conway, 1963). Conway described
software modules that interacted with one an-
other as if they were performing I/O operations.
In Conway’s words, “When coroutines A and
B are connected so that A sends items to B, B
runs for a while until it encounters a read com-
mand, which means it needs something from A.
The control is then transferred to A until it wants
to write, whereupon control is returned to B at
the point where it left off.” The key idea is that
both A and B maintain as part of their state their
progress through their procedures, and transfer
of control occurs to satisfy demands for data.

Gilles Kahn (1946 – 2006), French
computer scientist who developed
Kahn process networks.

The least fixed-point semantics is due to Kahn (1974), who developed the model
of processes as continuous functions on a CPO. Kahn and MacQueen (1977) de-
fined process interactions using non-blocking writes and blocking reads as a special
case of continuous functions, and developed a programming language for defining
interacting processes. Their language included recursive constructs, an optional
functional notation, and dynamic instantiation of processes. They gave a demand-
driven execution semantics, related to the lazy evaluators of Lisp (Friedman and
Wise, 1976; Morris and Henderson, 1976). Berry (1976) generalized these pro-
cesses with stable functions.

Sequences of tokens communicated by process networks are unbounded lists.
The notion of unbounded lists as data structures first appeared in Landin (1965).
This underlies the communication mechanism between processes in a process net-
work. The UNIX operating system, due originally to Ritchie and Thompson (1974),
includes the notion of pipes, which implement a limited form of process networks.

Kahn (1974) stated but did not prove that a maximal and fair execution of process
network yields the least fixed point. This was later proved by Faustini (1982) and
Stark (1995). It has come to be known as the Kahn principle.

E. A. Lee, Concurrent Models of Computation 33

http://Ptolemy.org

2.2. SEMANTICS OF PROCESS NETWORKS

2.2.1 Least Fixed Point Semantics

Recall that a fixed point of a function F : X → X is an element x ∈ X such that F(x) = x.
Execution of every process network can be reduced to finding a fixed point of a function.
The function is a composition of the functions defined by the individual actors.

Example 2.6: Consider the process network in Figure 2.1. This network is re-
drawn in Figure 2.2(a). In Figure 2.2(b), we reorganize the drawing and draw a box
around the three actors. This box can itself be a considered an actor with three in-
put ports and three output ports, as illustrated in Figure 2.2(c). Figure 2.2(d) further
abstracts this by aggregating the three signals into one.

Figure 2.2: Execution of every process network can be reduced to finding a fixed
point of a function, as illustrated by this sequence of transformations of a network.

34 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

Suppose that the three signals in Figure 2.2 have data type T . Then each signal si,
i = 1,2,3, is a member of the set T ∗∗ of sequences of tokens of type T . In Figure
2.2(d), the function F therefore has the form

F : (T ∗∗)3→ (T ∗∗)3.

Using the process definitions from Examples 2.1 and 2.3, we see that if the input is

s = ((a1,a2, · · ·),(b1,b2, · · ·),(c1,c2, · · ·)),
a three-tuple of sequences, then the output is

F(s) = ((b1 + c1,b2 + c2, · · ·),(0,a1,a2, · · ·),(1,1, · · ·)),
which is also a three-tuple of sequences.

Because of the feedback loop, we seek a sequence s that satisfies F(s) = s, so in
this case, we require that

a1 = b1 + c1

a2 = b2 + c2

b1 = 0

b2 = a1

c1 = 1

c2 = 1

· · ·
which implies that

a1 = 1

a2 = 2

b1 = 0

b2 = 1

c1 = 1

c2 = 1

· · ·
which is the same result we obtained before in Example 2.3.

E. A. Lee, Concurrent Models of Computation 35

http://Ptolemy.org

2.2. SEMANTICS OF PROCESS NETWORKS

Execution of a process network with n signals of type T can be reduced to finding a fixed
point of a function of the form

F : (T ∗∗)n→ (T ∗∗)n.

If a process network has signals with different types, then the domain and codomain of the
function will be a cartesian product of the sets of sequences of those types. The notation
gets more complex, but not the concept. It may be surprising that all process networks
can be reduced in the same way to finding a fixed point of a function.

Example 2.7: Consider the network in Figure 2.3(a). It may seem that this would
be difficult to reduce to a fixed point problem because there is no feedback in the
network. However, this can be redrawn as shown in Figure 2.3(b), and abstracted
as shown in Figure 2.3(c). In this case, the function F is a rather trivial function.
Regardless of the input signal, it always produces the same output signal. It is a
constant function, where the output is independent of the input.

To be concrete, suppose that the data type is T = N, the natural numbers, and that
actor A produces the sequence (0,1,2,3, · · ·). Then F : N∗∗ → N∗∗ is a function
such that for all s ∈ N∗∗,

F(s) = (0,1,2,3, · · ·).
Hence, s = (0,1,2,3, · · ·) is a fixed point of F (the only fixed point, in fact).

Figure 2.3: Even a process network with no feedback loops can be reduced to
finding a fixed point of a function, as illustrated by this sequence of transforma-
tions of a network.

36 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

Figure 2.4: A process network with multiple fixed points, where I is the identity
actor.

For the above examples, the function F has exactly one fixed point. This is not always the
case.

Example 2.8: Consider an identity actor I, described in Example 2.4, where for
all s ∈ T ∗∗,

I(s) = s.

Suppose that this actor is used the process network shown in Figure 2.4. This
process network has multiple fixed points. In fact, any signal s ∈ T ∗∗ is a fixed
point.

Recall from Chapter 1 that the prefix order is a partial-order relation v over sets of se-
quences T ∗∗. For any two a,b ∈ T ∗∗, a v b if the sequence a forms the leading part of
sequence b. If a is infinite, then av b if and only if a = b.

When a process network has multiple fixed points, we will choose the least fixed point,
where “least” is in the prefix order.

Example 2.9: For the process network in Figure 2.4, the least fixed point is s =⊥,
the empty sequence. This choice is indeed the least fixed point because for all
other fixed points s, ⊥ v s. Moreover, it is exactly the fixed point that results
from executing the Kahn-MacQueen process! The process deadlocks immediately,
blocked on the first read. Hence, the result of execution is the empty sequence.

E. A. Lee, Concurrent Models of Computation 37

http://Ptolemy.org

2.2. SEMANTICS OF PROCESS NETWORKS

We will see next that with Kahn-MacQueen process networks, the least fixed point is
always uniquely defined, and execution of the network produces that least fixed point. We
will then show that some actors that cannot be defined as Kahn-MacQueen processes also
yield a uniquely defined least fixed point.

2.2.2 Monotonic and Continuous Functions

Recall that a function A : T ∗∗→ T ∗∗ is monotonic if a v b implies that A(a) v A(b). A
Kahn-MacQueen process defines a function from input sequences to output sequences as
long as the imperative language used to define the language is determinate. This means
that given particular input signals at the input ports, the output signals are fully defined
by the process. More interestingly, Kahn-MacQueen processes are monotonic.

Example 2.10: The unit delay function considered in Example 2.5 is monotonic.
Consider two possible input signals a,b∈N∗∗. The corresponding output sequences
are A(a) = (0).a and A(b) = (0).b. Clearly, if av b, then A(a)v A(b).

The fact that Kahn-MacQueen processes are monotonic is easy to see by considering
their execution. Suppose a,b ∈ N∗∗ are two possible input signals where av b. A Kahn-
MacQueen process that is presented with input b will first read a sequence of tokens equal
to a. Since the process its determinate, once it has read this prefix of b, its output will be
exactly the output sequence it would have produced had it been presented with input a.
Upon continuing to read tokens from b (which now differ from a), it will only extend the
output signal. It has no mechanism for retracting previously produced tokens, and hence
the output produced in response to b is an extension of the output produced in response to
a.

Notice that the blocking reads of a Kahn-MacQueen process play an important role in
ensuring monotonicity.

Example 2.11: Consider an actor A with one input port and one output port that
produces on its output the sequence (0) if the input is the empty sequence, and
otherwise produces the output (1). This actor clearly defines a function, in that

38 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

the output is fully defined by the input. However, this function is not monotonic.
Suppose that a =⊥, the empty sequence, and b = (0). Then av b, but A(a) = (0)
is not a prefix of A(b) = (1).

Notice that this actor cannot be implemented as a Kahn-MacQueen process. In
order to produce the output (0), the actor needs to know that that input is the empty
sequence. But the only operation it has available on the input port is to perform a
blocking read. If the input is indeed empty, then it will remain blocked forever, and
hence will not be able to produce the output (0).

As explained in Example 1.15 of Chapter 1, the poset (T ∗∗,v) is a complete partial order
(CPO). Moreover, by Proposition 1.3, the poset ((T ∗∗)n,v) is also a CPO, where v is
the pointwise prefix order. A function F : (T ∗∗)n→ (T ∗∗)n is continuous if for all chains
C ⊆ (T ∗∗)n,

F(
_

C) =
_

F̂(C) ,

where F̂ is the lifted version of F . By Proposition 1.5, every continuous function is
monotonic.

In practice, every Kahn-MacQueen process is not only monotonic, but also continuous.
Why? Intuitively, continuity means that a function does not “wait forever” before produc-
ing output. Suppose that the chain C = {s0,s1,s2, · · ·} represents a sequence of partially
constructed inputs to a Kahn-MacQueen process. Then

W
C = s represents the eventual,

complete input. The set

F̂(C) = {F(s0),F(s1),F(s2), · · ·}

represents the partially constructed outputs, given partially constructed inputs. Then con-
tinuity requires that

W
F̂(C) be equal to the eventually complete output F(s).

Example 2.12: Suppose that A is an actor with one input port and one output port.
Suppose that its input is eventually going to be the infinite sequence

s = (0,1,2,3, · · ·)

E. A. Lee, Concurrent Models of Computation 39

http://Ptolemy.org

2.2. SEMANTICS OF PROCESS NETWORKS

Suppose that C = {s0,s1,s2, · · ·}, where

s0 = (0)
s1 = (0,1)
s2 = (0,1,2)
· · ·

C is clearly a chain. Moreover, _
C = s.

Suppose further that A is the function

A(s) =
{ ⊥ if s is finite

(1) otherwise

This function is clearly monotonic, but it is not continuous. In particular, when the
function is applied to each partially constructed input in C, the output is ⊥. Hence,

F̂(C) = {F(s0),F(s1),F(s2), · · ·}= {⊥}.
Hence, _

F̂(C) =⊥ .

However,
F(

_
C) = F(s) = (1).

These two are not equal. Intuitively, the function F has to wait forever to determine
whether the input is finite or not.

Notice that this function cannot be implemented by a Kahn-MacQueen process. We
might try to specify it as follows,

1 while(true) {
2 read(p1);
3 }
4 write(p2, 1);

That is, after reading an infinite number of inputs, we output a 1. If the input
is finite, this process will block forever on one of the reads. But in practice, it
will never reach the point of producing the 1, so this procedure does not really
implement the function.

40 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

The Kleene fixed-point theorem (Proposition 1.7) then provides what we need. It states
that if F is a continuous function, then it has a unique least fixed point. Moreover, it
asserts that the least fixed point is the result of applying the function first to ⊥, and then
recursively to the result, etc., as follows:

s0 = ⊥
s1 = F(⊥)
s2 = F(F(⊥))
· · ·
sm = Fm(⊥)
· · ·

Thus, instead of solving a system of equations, as we did in Example 2.6, we can construct
the solution by just repeatedly applying the function F .

Example 2.13: Consider the same process network of Example 2.6. Recall that
the function F : (T ∗∗)3→ (T ∗∗)3 is given by

F(s) = ((b1 + c1,b2 + c2, · · ·),(0,a1,a2, · · ·),(1,1, · · ·)),

where the input is

s = ((a1,a2, · · ·),(b1,b2, · · ·),(c1,c2, · · ·)),

This function is easily shown to be continuous.

In this case, the bottom of the CPO is the three-tuple of empty sequences, so the
constructive procedure given by the Kleene fixed-point theorem proceeds as fol-
lows,

F((⊥,⊥,⊥)) = (⊥,(0),(1,1, · · ·)
F(F((⊥,⊥,⊥))) = ((1),(0,1),(1,1, · · ·)

F(F(F((⊥,⊥,⊥)))) = ((1,2),(0,1,2),(1,1, · · ·)
· · ·

This eventually converges to the same sequences found in Example 2.3.

E. A. Lee, Concurrent Models of Computation 41

http://Ptolemy.org

2.2. SEMANTICS OF PROCESS NETWORKS

Notice that this procedure immediately creates a practical problem. The very first invoca-
tion of the function F yields as the third element of the output tuple an infinite sequence.
If we were to literally implement this procedure in a computer, then we would never get
past the first step, and we would exhaust available memory in any attempt to generate this
infinite sequence. The following section will consider practical execution policies.

Example 2.14: For the variant given by Example 2.4, which has a local deadlock,
the Kleene procedure immediately converges to the final answer,

F((⊥,⊥,⊥)) = (⊥,⊥,(1,1, · · ·).

Example 2.15: For the process network in Figure 2.4, recall that the least fixed
point is s =⊥. The Kleene procedure immediately converges to this solution.

Example 2.16: Recall that the unit delay actor of Example 2.1 is a function of
form

A : N∗∗→ N∗∗

where for all b ∈ N∗∗,
A(b) = (0).b.

This function is continuous. Suppose we put it in a feedback loop, as we did with
the identify function in Figure 2.4. Then the Kleene procedure would yield

F(⊥) = (0)
F(F(⊥)) = (0,0)

F(F(F(⊥))) = (0,0,0)
· · ·

The least upper bound of this chain is the infinite sequence (0,0,0, · · ·).

42 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

2.3 Execution of Process Networks

The least fixed point of a process network often includes infinite sequences. In practice,
no computer program can construct an infinite sequence. Our interpretation is that process
networks whose semantics include infinite sequences do not terminate. They are able to
continue to execute for as long as we would like them to execute. But at any point during
the execution, the sequences that they have produced are mere approximations of the
semantics of the semantics of the network. When there are multiple infinite sequences
defined by a network, then there are many possible approximations. In this section, we
consider execution policies that provide useful approximations.

First, we define a correct execution of a process network to be one which, at any time
during execution, has constructed a prefix of each signal defined by the semantics of
the network. These prefixes will always be finite, even if the semantics of the network
includes infinite sequences.

Second, we define a maximal execution to be a correct execution that either does not
halt, or if it halts, has produced exactly every sequence defined by the network. What
we mean by “halt” in this case is that the execution no longer appends tokens to signals.
A maximal execution will only halt if the semantics of the network defines only finite
signals. An infinite execution is an execution that does not halt. All infinite executions
are maximal.

Third, we define a fair execution to be one that ensures that if any process is able to
produce an output token or read an input token, then it will eventually be allowed to do
so.

The following proposition, known as the Kahn principle, stated by Kahn and MacQueen
(1977) and later proved by Faustini (1982) and Stark (1995), provides key guidance for
execution policies.

Proposition 2.1. Any two fair and maximal executions of a process network produce the
same sequences of messages, matching the least fixed point in the Kahn semantics.

The Kahn principle seems to suggest that practical executions of process networks should
always be fair and maximal. This is not in fact obvious. The following example shows
that fair and maximal executions are not always desirable.

E. A. Lee, Concurrent Models of Computation 43

http://Ptolemy.org

2.3. EXECUTION OF PROCESS NETWORKS

Figure 2.5: Example of a process network where unfair execution is desirable
because fair execution will exhaust available memory.

Example 2.17: Consider the process network in Figure 2.5. Suppose that actors
A and B produce infinite sequences, and C is able to consume an infinite sequence.
Suppose that the actor labeled true produces an output of type B = {true, false} that
is a constant infinite sequence

s3 = {true, true, true, · · ·}.
The remaining actor in the center, which has no label, is a Select actor. It ac-
cepts a sequence of control tokens on the bottom port, and uses these to merge the
sequences at its other two input ports. The merged sequence is the output. Specif-
ically, the Select actor has three input ports, T, F, and control, where the control
port is shown on the bottom of its icon. It has a single output port p. The actor is
defined by the following Kahn-MacQueen procedure,

1 while{true} {
2 c = read(control);
3 if (c) {
4 t = read(T);
5 } else {
6 t = read(F);
7 }
8 write(p, t);
9 }

Any fair execution of this process network has to permit B to produce its infinite
sequence of tokens, even though those tokens will never be consumed. This will
require unbounded memory to store unconsumed tokens.

44 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

There is, however, a maximal execution of this network that runs in bounded mem-
ory. Such an execution would only permit actor B to produce a finite number of
tokens. Such an execution is maximal and correct, but not fair.

A bounded execution is an execution of a process network where there is a natural num-
ber M ∈ N such that at all times during the execution there are no more than M uncon-
sumed tokens. A fair and maximal execution of the network in Figure 2.5 is not bounded.

An effective process network is one where every token that can be produced by an actor
will eventually be read by the destination actor(s) (Geilen and Basten, 2003). The process
network in the previous example is not effective. For networks that are not effective, we do
not necessarily want fair and maximal execution, because such execution will eventually
fail due to running out of memory.

Even for networks that are effective, executing them with bounded memory is not always
easy. Suppose that we modify the network in Figure 2.5 so that the actor labeled true
produces a random sequence of true and false values. How can we ensure that A and B so
not overflow available memory on their outputs? Even for much simpler networks there
is risk of memory overflow.

Example 2.18: Suppose that in the network in Figure 2.3(a), actor A produces
tokens faster than actor B. Then eventually, we will run out of memory.

We seek, therefore, and execution policy that will deliver maximal executions for all pro-
cess networks, bounded executions for networks for which bounded execution is possible,
and fair executions for effective process networks. We call these effective executions.
Effective executions are not required to be fair for networks that are not effective. They
are not required to be bounded for networks that have no bounded execution. They are
required to be maximal for all networks.

There is a long history of failed attempts to achieve this goal. One popular proposed
technique is demand-driven execution, related to the lazy evaluators of Lisp (Friedman
and Wise, 1976; Morris and Henderson, 1976), where no token is produced unless there
is a downstream actor that is ready to consume it. Unfortunately, this does not solve the
problem, as illustrated by the following example.

E. A. Lee, Concurrent Models of Computation 45

http://Ptolemy.org

2.3. EXECUTION OF PROCESS NETWORKS

Figure 2.6: Example of a process network where demand-driven execution fails
to deliver a bounded execution.

Example 2.19: A variant of Figure 2.5 is shown in Figure 2.6. The only difference
is that is a new actor D has been added that consumes tokens from actor B. Each
token produced by B needs to be routed to both the Select actor and to D. This
can be accomplished by a fork process, indicated in the figure by a small black
diamond. The fork can be implemented, for example, by the Kahn-MacQueen
procedure

1 while (true) {
2 t = read(in);
3 write(out1, t);
4 write(out2, t);
5 }

Thus, there will be two buffers, one storing tokens destined for the Select, and one
storing tokens destined for D.

Assume that D is able to read an infinite input sequence. As a consequence, it will
demand tokens. In demand-driven execution, the fork will respond by demanding
inputs. Once the fork receives an input, the above Kahn-MacQueen implementation
will send the token to both outputs, and hence the buffer at the F input of the Select
will eventually overflow. If the fork is implemented differently so that it only sends
outputs in response to demands, then it will be obligated to store the token locally
in case the token is later demanded. This too will overflow available memory.

46 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

In the previous example, demand-driven execution can deliver bounded execution only
if we somehow regulate the demands issued by the two sink actors, C and D. But how
would we do that? Moreover, suppose that network contains cycles, or more interestingly,
a multiplicity of cycles. How would demands be generated?

Data-driven execution is the complement of demand-driven execution. Instead of sink
actors driving the execution (actors with no output ports), source actors drive the exe-
cution (actors with no input ports). An actor is permitted to execute only when it has
available input data, except source actors, which are always permitted to execute. This
obviously does not achieve the goal, since even a network as simple as that in Figure
2.3(a) cannot be assured of remaining bounded.

The problem of achieving effective executions is harder than it first appears. Fair exe-
cution, demand-driven execution, and data-driven execution all fail. It is not surprising
that the problem is hard, however. It turns out that whether a bounded execution exists is
undecidable, as is whether an infinite execution exists. We defend this claim in the next
subsection. After that (Section 2.3.2), we show how to solve the undecidable problem by
giving a policy that delivers effective execution.

2.3.1 Turing Completeness of Process Networks

(FIXME: Fill in this section)

2.3.2 Effective Execution

A partial solution to the problem of delivering effective execution was given by Parks
(1995). Parks’ solution delivers bounded and maximal execution for every process net-
work that has a bounded execution. But it does not guarantee a fair execution.

Parks’ algorithm is simple. An execution starts with bounded buffers on all connections
between actors. It does not matter what the bound is. When a process attempts to write
to a buffer that is full, the write blocks. That is, the process stalls, waiting for room
to become available. Now, one of three things can happen. First, the network might
execute forever, continuing to produce and consume tokens, even though some processes
are blocked on a write. This achieves an infinite (hence maximal) bounded execution.
Second, the network might deadlock where all processes have either terminated or are
blocked on a read. In this case, the process network specified a finite execution, and the

E. A. Lee, Concurrent Models of Computation 47

http://Ptolemy.org

2.3. EXECUTION OF PROCESS NETWORKS

finite execution has been completed. The execution is again maximal and bounded. Third,
the network might deadlock where at least one process is blocked on a write. In this third
case, Parks’ strategy finds the smallest buffer on which a process is write blocked and
increases its capacity so as to unblock the write-blocked process. Execution continues
until again one these three scenarios occurs.

For many process networks, Parks’ strategy achieves an effective execution. But not for
all, as illustrated by the following example.

Example 2.20: Consider the process network in Figure 2.7. Suppose that all four
processes can produce and consume infinite signals. Moreover, suppose that C is
defined by the following Kahn-MacQueen procedure,

1 while (true) {
2 t = read(in);
3 write(out1, t);
4 write(out1, t);
5 write(out2, t);
6 }

Suppose further that D is defined by the following Kahn-MacQueen procedure,

1 write{out, 0);
2 while (true) {

Figure 2.7: Example of a process network where Parks’ algorithm does not yield
an effective execution.

48 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

3 t = read(in2);
4 t = read(in1);
5 t = read(in1);
6 write(out, t);
7 }

It is easy to see that the least fixed point yields the infinite signal s2 = (0,0,0, · · ·).
Now suppose that we execute this network using Parks’ algorithm, starting with
initial buffer sizes of 1. D successfully produces its first output, enabling C to
complete the read on line 2. C will then perform the write on line 3, but the write on
line 4 will block because the buffer capacity has been reached. As a consequence,
D will block on the read on line 3. A local deadlock occurs.

Under Parks’ algorithm, no corrective action is taken because actors A and B are
able to continue running indefinitely. As a consequence, this is not a fair execution.
To be fair, every actor that is able to produce outputs must be allowed to do so. C
is able to produce outputs, but we have blocked it artificially as part of our execu-
tion policy (for this reason, the state of the execution is called an local artificial
deadlock).

Geilen and Basten (2003) identified this flaw in Parks’ algorithm, and proposed an alter-
native execution strategy. Their strategy is similar to that of Parks in that execution starts
with arbitrarily bounded buffers. But while Parks’ algorithm looks only for a global ar-
tificial deadlock (all processes are blocked, at least one on a write), Geilen and Basten’s
strategy looks for local artificial deadlock.

Specifically, if at any time during the execution there is sequence of actors (A1,A2, · · · ,An),
n≥ 1, where Ai is connected to Ai+1 and An is connected to A0, where all of these actors
are blocked, at least one on a write, then we have a local artificial deadlock. Note that
when we say “Ai is connected to Ai+1,” we mean that either Ai send tokens to Ai+1 or vice
versa. So (A1,A2, · · · ,An) is an (undirected) cycle of blocked actors. When an artificial
deadlock is detected, the Geilen and Basten strategy will increase the size of at least one
buffer on which a process in the cycle is write blocked.

Geilen and Basten (2003) prove that this strategy delivers an effective execution for effec-
tive process networks. But they make no guarantee about networks that are not effective.
In fact, for the network in Figure 2.5, the strategy will overflow memory. Specifically,

E. A. Lee, Concurrent Models of Computation 49

http://Ptolemy.org

2.3. EXECUTION OF PROCESS NETWORKS

Figure 2.8: A process network for which it is difficult to determine appropriate buffer
sizes.

actor B alone forms (trivial) undirected cycle, so whenever it write blocks, the capacity of
its output buffer will be increased. Since the tokens it writes to the buffer are never read,
the buffer will grow without bound.

For all of the examples we have considered so far, it is relatively easy to determine whether
a bounded execution exists. This is not always the case, as illustrated by the following
example.

Example 2.21: Consider for example the network shown in Figure 2.8. The out-
put is an ordered sequence of integers of the form 2n3m5k, where n, m and k are
non-negative integers. These are known as the Hamming numbers, and this pro-
gram for computing them was studied by Dijkstra (1976) and Kahn and MacQueen
(1977).

To understand how this network works, we need to understand what each of the
actors does. The ones labeled ScaleN simply read an integer-valued input token,
multiply it by N, and send the product to the output port. They repeat this sequence
forever, as long as there are input tokens. The UnitDelay actors are parameterized
versions of the unit delay that we saw in Example 2.1. They first produce an out-
put message with value N, then repeat forever the following sequence: read the
input message and send it to the output. As before, the black diamonds are fork ac-

50 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

tors. They direct a single message sequence to multiple destinations (over separate,
unbounded buffers).

The processes labeled OrderedMergeM are the only nontrivial processes in this
program. Given a sequence of numerically increasing messages on each input port,
they produce a numerically increasing merge of the two input sequences on their
output ports (see Exercise ?? for a Kahn-MacQueen implementation of such an
ordered merge). You can now understand how this program generates the Hamming
numbers. The loop at the upper left produces the sequence

(5,25,125, · · · ,5n, · · ·).

That sequence is merged into the the second loop, which as a result produces the
sequence

(3,5,9,15,25, · · · ,5n3m, · · · .
That sequence is merged into the final loop, which produces the Hamming numbers,
in numerically increasing order, without repetitions.

Although it is far from easy to see at a glance, it is possible to prove that any finite
bound on buffer sizes will cause the network to fail to produce all the Hamming
numbers. This network intrinsically requires unbounded buffers. It is effective, and
both Parks’ and Geilen and Basten’s strategies deliver an effective execution.

2.4 Convergence of Execution to the Semantics

The Kahn principle states that maximal and fair executions produce sequences that match
that the least fixed point. But what do we mean by “match?” Every execution is, at all
times, finite, and can only have produced a prefix of the least fixed point. Intuitively, we
would like such executions to converge in the limit to the least fixed point. But to make
this intuition precise, we have to define a notion of convergence for sequences.

We use the notion of a topology. Let X be any set. A collection τ of subsets of X is called
a topology if three conditions are satisfied

1. X and /0 are members of τ.
2. The intersection of any two members of τ is in τ.

E. A. Lee, Concurrent Models of Computation 51

http://Ptolemy.org

2.4. CONVERGENCE OF EXECUTION TO THE SEMANTICS

3. The union of any family of members of τ is in τ.

For any topology τ, the members of τ are called the open sets of the topology. See the
sidebar on page 54 for an explanation of how this relates to the usual notion of open sets
of real numbers. In our case, we are not concerned with real numbers, but rather with
sequences of tokens of arbitrary type.

There is an important but subtle distinction between conditions (2) and (3) above. A
“family of members of τ” may be infinite. Thus, in a topology, the union of an infinite
number of open sets is an open set. But the intersection of an an infinite number of open
sets may not be an open set. The intersection of any finite number of open sets is required
to be an open set, but not of an infinite number of open sets.

Consider a set T and the set T ∗∗ of finite and infinite sequences of elements of T . Given
a finite sequence s ∈ T ∗∗, an open neighborhood Ns around s is the set

Ns = {s′ ∈ T ∗∗ | sv s′}.

Ns is the set of sequences with prefix s.

Let τ be the collection of all sets that are arbitrary unions of such open neighborhoods.
Then τ is a topology. This topology is a particular kind of Scott topology, named af-
ter Dana Scott (1932–present), a renowned computer scientist and mathematician. See
Exercise ?? for some properties of this toplogy.

Notice that an open neighborhood is defined by a finite prefix. Were we to allow an
infinite prefix, then a singleton set consisting of a single infinite sequence would be an
open neighborhood. So infinite prefixes are not allowed.

Note further that an arbitrary intersection of open sets is not necessarily an open set.
Consider any infinite chain C⊂ T ∗∗ containing only finite sequences. Each ci ∈C defines
an open neighborhood (the set of all sequences with ci as a prefix). The intersection of all
of these open neighborhoods can only contain sequences that have every ci ∈C as a prefix.
There is only one such sequence,

W
C, so this intersection of open sets is a singleton set

containing exactly one infinite sequence. This singleton set is not an open set.

Using our Scott topology, we can now define a notion of convergence of a sequence of
sequences. Consider a sequence of sequences

S : N→ T ∗∗.

52 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

This sequence is said to converge to a sequence a ∈ T ∗∗ if for all open sets A containing
a, there exists an integer n ∈ N such that for all integers m > n, the following holds:

S(m) ∈ A.

Intuitively, this means that for any finite prefix p v a, the sequences in S eventually all
have prefix p.

In summary, in the Scott topology, for a sequence of sequences to converge to an infi-
nite sequence, it is necessary for the sequences to grow without bound. They need to
eventually produce every finite prefix of the infinite sequence.

This notion of convergence creates an interesting conundrum. A convergent execution
of a process network is one that eventually produces every finite prefix of the least fixed
point. A maximal execution, by contrast, is only required to produce some prefix of the
least fixed point. A maximal execution does not necessarily converge to the least fixed-
point.

Example 2.22: For the example in Figure 2.5, a maximal execution is permitted
to avoid executing actor B. In particular, the output s3 of actor true is an infinite
sequence of boolean true tokens, so the output s2 of actor B is never needed and
will never be consumed by the Select. But if B is capable of producing an infinite
sequence, then the least fixed point solution for s2 is an infinite sequence. Any
execution that converges to this least fixed point solution will exhaust available
memory because tokens produced by B will not be consumed.

Maximal and fair executions, however, do converge. For effective process networks,
Geilen and Basten’s execution strategy, described in Section 2.3.2, will deliver an ef-
fective execution, and that effective execution will converge to the least fixed point. For
networks that are not effective, however, the strategy is less satisfactory because it may
exhaust available memory. For such networks, Parks’ algorithm may be preferable, even
though it does not converge to the least fixed point.

2.5 Stable Functions

(FIXME: Section on functions that are not sequential)

E. A. Lee, Concurrent Models of Computation 53

http://Ptolemy.org

2.6. NONDETERMINISM

2.6 Nondeterminism

(FIXME: nondeterminate merge and the Brock-Ackerman anomaly.)

2.7 Rendezvous

(FIXME: Rendezvous as PN with buffer size zero.)

Sidebar: Limit of a Sequence of Real Numbers

An open neighborhood around a in R is the set

Na,ε = {x ∈ R | a− ε < x < a+ ε}

for some positive real number ε. An open set A in the reals is a subset of R such that for
all a ∈ A, there is an open neighborhood around a that is a subset of A. The collection of
such open sets in the reals is called the standard topology for the reals. It is a topology
because it includes both R itself and /0, it includes the intersection of any two such open
sets, and it includes an arbitrary union of such open sets. Notice that it does not include
any arbitrary intersection of open sets. Consider for example the intersection of the sets

N0,ε, where ε = 1/n, n ∈ {1,2,3, · · ·}.

The intersection of these sets is the singleton set {0}, which is not an open set.
Consider a sequence of real numbers

s : N→ R.

This sequence is said to converge to a real number a if for all open sets A containing a
there exists an integer n ∈ N such that for all integers m > n the following holds:

s(m) ∈ A.

This notion of convergence captures the intuition that the sequence eventually gets arbi-
trarily close to a.

54 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

2. PROCESS NETWORKS

2.8 Summary

(FIXME: Summary here)

E. A. Lee, Concurrent Models of Computation 55

http://Ptolemy.org

2.8. SUMMARY

56 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

Bibliography

Berry, G., 1976: Bottom-up computation of recursive programs. Revue Franaise dAu-
tomatique, Informatique et Recherche Oprationnelle, 10(3), 47–82.

Conway, M. E., 1963: Design of a separable transition-diagram compiler. Communica-
tions of the ACM, 6(7), 396–408.

Davey, B. A. and H. A. Priestly, 2002: Introduction to Lattices and Order. Cambridge
University Press, second edition ed.

Dijkstra, E. W., 1976: A Discipline of Programming. Prentice Hall.

Faustini, A. A., 1982: An operational semantics for pure dataflow. In Proceedings of the
9th Colloquium on Automata, Languages and Programming (ICALP), Springer-Verlag,
vol. Lecture Notes in Computer Science (LNCS) Vol. 140, pp. 212–224.

Friedman, D. P. and D. S. Wise, 1976: CONS should not evaluate its arguments. In
Third Int. Colloquium on Automata, Languages, and Programming, Edinburg Univer-
sity Press.

Geilen, M. and T. Basten, 2003: Requirements on the execution of Kahn process net-
works. In European Symposium on Programming Languages and Systems, Springer,
LNCS, pp. 319–334.

57

BIBLIOGRAPHY

Kahn, G., 1974: The semantics of a simple language for parallel programming. In Proc.
of the IFIP Congress 74, North-Holland Publishing Co.

Kahn, G. and D. B. MacQueen, 1977: Coroutines and networks of parallel processes. In
Gilchrist, B., ed., Information Processing, North-Holland Publishing Co., pp. 993–998.

Landin, P. J., 1965: A correspondence between Algol 60 and Church’s lambda notation.
Communications of the ACM, 8(2), 89–101.

Morris, J. H. and P. Henderson, 1976: A lazy evaluator. In Conference on the Principles
of Programming Languages (POPL), ACM.

Parks, T. M., 1995: Bounded Scheduling of Process Networks. Phd thesis, UC Berkeley.

Ptolemaeus, C., ed., 2012: System Design, Modeling, and Simulation Using Ptolemy
II. Ptolemy.org, Berkeley, CA, USA. Available from: http://ptolemy.org/
books.

Ritchie, D. M. and K. L. Thompson, 1974: The UNIX time-sharing system. Communica-
tions of the ACM, 17(7), 365 – 375.

Stark, E. W., 1995: An algebra of dataflow networks. Fundamenta Informaticae, 22(1-2),
167–185.

58 E. A. Lee, Concurrent Models of Computation

http://ptolemy.org/books
http://ptolemy.org/books
http://Ptolemy.org

Notation Index

B = {0,1} binary digits 2
N = {0,1,2, · · ·} natural numbers 2
Z = {· · · ,−1,0,1,2, · · ·} integers 2
R real numbers 2
R+ non-negative real numbers 2
A⊆ B subset 2
℘(A) powerset 2
2A powerset 2
/0 empty set 2
A\B set subtraction 2
A×B cartesian product 2
(a,b) ∈ A×B tuple 2
A0 singleton set 2
f : A→ B function 3
f : A ⇀ B partial function 3
g◦ f function composition 3
f n : A→ A function to a power 3
(A→ B) set of all functions from A to B 3
BA set of all functions from A to B 3
f 0(a) identity function 4

59

NOTATION INDEX

f̂ : 2A→ 2B image function 4
f |C restriction 5
πI projection 6
π̂I lifted projection 6
ω = { /0,{ /0},{ /0,{ /0}}, · · ·} von Neumann numbers 7
Aω infinite sequences 7
A∗ finite sequences 8
AN infinite sequences 8
A∗∗ finite and infinite sequences 8
≤ partial order 8
(A,≤) poset 9
v prefix order 9
(A,<) strict poset 10
Q rational numbers 11W

B join, least upper bound, LUB 11V
B meet, greater lower bound, GLB 11
⊥ bottom element 12
∞ infinity 13
[A→ B] set of all continuous functions 19
a.b concatenation 30

60 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

Index

n-tuple, 2

actor, 28
alphabetical order, 10
antisymmetric, 8
artificial deadlock, 49
assignment rule, 3
axiom of choice, 14, 21

Berkeley, 23
bijection, 4, 18, 24
binary digits, 2, 59
blocking read, 29
blocking reads, 33
bottom element, 12, 60
bounded execution, 45, 50
buffer, 28

cartesian product, 2, 7, 36, 59
chain, 9, 12, 39
channel, 28
codomain, 3
comparable, 9

complete lattice, 17, 23
complete lower semilattice, 17
complete partial order, 12, 14, 32, 39
complete upper semilattice, 17
concatenation, 24, 30, 60
concurrency, 27
constant function, 36
continuous, 19, 32, 39
continuous functions, 33
convergence of a sequence of sequences, 52
convergent execution, 53
coroutines, 33
correct execution, 43
countable, 25
CPO, 12, 14, 19, 25, 33

data type, 32, 35
data-driven execution, 47
deadlock, 31
demand-driven, 45
demand-driven execution semantics, 33
determinate, 27

61

INDEX

dictionary order, 10
directed set, 12, 14
domain, 3

effective execution, 45, 47, 48, 53
effective process network, 45, 49, 53
effectively computable, 32
empty set, 2, 59
existence of fixed points, 21

fair execution, 43, 47, 49
finite and infinite sequences, 13
finite sequences, 8, 13, 60
fixed point, 21, 34
fixed point theorem, 21
flat order relation, 15
flat partial order, 15
fork, 46, 50
function, 3, 38, 59
function composition, 3, 59
function to a power, 59

GLB, 11, 60
graph, 3, 7
greater lower bound, 60
greatest lower bound, 11

Hamming numbers, 50
Hasse diagrams, 15

identity actor, 31, 37
identity function, 4, 59
image, 4
image function, 60
imperative, 29
incomparable, 9
infinite execution, 43
infinite sequences, 7, 8, 60
infinity, 60

infix notation, 9
injective, 4
integers, 2, 59
inverse, 5

join, 11, 60
join semilattice, 17
joinable, 11, 12

Kahn principle, 33, 43, 51
Kahn process network, 27
Kahn, Gilles, 33
Kahn-MacQueen network, 29
Kahn-MacQueen process, 29, 39
Kleene chain, 23
Kleene closure, 8
Kleene fixed-point theorem, 21, 23, 41
Kleene operator, 8
Kleene star, 8
Kleene, Stephen Cole, 8, 23
Knaster, Bronislaw, 23
KnasterTarski fixed-point theorem, 23
KPN, 27

lattice, 16, 25
lazy evaluators, 33, 45
least fixed point, 21, 37
least fixed-point semantics, 33
least upper bound, 11, 14, 60
lexicographic order, 10, 18, 25
lifted, 4, 6, 19, 24, 39
lifted projection, 6, 60
limit, 12, 14
local artificial deadlock, 49
local deadlock, 31, 49
lower bound, 11
lower semilattice, 17, 25
LUB, 11, 25, 60

62 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

INDEX

maximal execution, 43, 53
meet, 11, 60
meet semilattice, 17
message passing, 27
model of computation, 28
monotonic, 18, 38

natural numbers, 2, 59
non-blocking writes, 33
non-negative real numbers, 2, 59
nonblocking write, 29
numeric order, 9, 13, 18, 19, 24, 25

one-to-one, 4, 18, 24
onto, 4, 18, 24
open neighborhood, 52, 54
open set, 52
order, 8
order embedding, 18
order isomorphic, 18, 24
order isomorphism, 18
order preserving, 18
OrderedMergeM actor, 51
ordinals, 14

parameter, 30
Parks’ algorithm, 47, 53
partial execution, 15
partial function, 3, 59
partial order, 8, 25, 60
partially ordered set, 9
permuting elements of a tuple, 6
pipes, 33
PN, 28
pointed, 12
pointwise order, 10
pointwise prefix order, 15, 39
port, 28

poset, 9, 10, 60
powerset, 2, 4, 7, 10, 16, 59
powerset lattice, 16, 23
prefix, 30
prefix order, 9, 13, 14, 18, 32, 37, 60
private state, 28
procedure, 28
process, 28
process network, 28
projection, 6, 60

range, 4
rational numbers, 11, 60
real numbers, 2, 59
reflexive, 8
relation, 3, 8, 9
restriction, 5, 60

Scott topology, 52
Scott, Dana, 52
Select actor, 44, 46
semantics, 15, 32
sequence, 8
sequences, 8, 9, 32, 60
set, 2
set of all continuous functions, 19, 60
set subtraction, 2, 59
signal, 28, 32
singleton set, 2, 7, 8, 59
sink, 47
source, 47
stable functions, 33
standard topology, 54
strict partial order, 10
strict poset, 10, 60
subset, 2, 59
subset order, 9, 11, 16, 17, 24, 25
surjective, 4

E. A. Lee, Concurrent Models of Computation 63

http://Ptolemy.org

INDEX

Tarski’s fixed-point theorem, 23
Tarski, Alfred, 23
Tarskian, 23
token, 28, 32
topology, 51, 54
total function, 3
total order, 9, 10, 25
transitive, 8
tuple, 2, 59
Turing complete, 32
type, 32

unbounded list, 33
unbounded memory, 31
undecidable, 31, 47
uniqueness of fixed points, 21
unit delay, 30, 32, 38, 42, 50
University of California, 23
upper bound, 11
upper semilattice, 17, 25

von Neumann, 7
von Neumann numbers, 7, 13, 24, 60

64 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org

	Acknowledgements
	Partially Ordered Sets
	Sets
	Relations and Functions
	Sequences
	Partial Orders
	Functions on Posets
	Fixed Points
	Exercises

	Process Networks
	Kahn-MacQueen Process Networks
	Semantics of Process Networks
	Execution of Process Networks
	Convergence of Execution to the Semantics
	Stable Functions
	Nondeterminism
	Rendezvous
	Summary

	Bibliography
	Notation Index
	Index

