
Chess

A Graphical Development and Simulation Environment

Elaine Cheong Edward A. Lee Yang Zhao Christopher Brooks

University of California, Berkeley
Center for Hybrid & Embedded Software Systems

http://ptolemy.eecs.berkeley.edu/viptos
for TinyOS-based Wireless Sensor Networks

Summary

Viptos Harvest Tools

TinyOS/nesC Architecture

Viptos (Visual Ptolemy and TinyOS) is an integrated
graphical development and simulation environment for
TinyOS-based wireless sensor networks.

Graphical Development. Viptos allows developers to create
block and arrow diagrams to construct TinyOS programs from
any standard library of nesC/TinyOS components.

Code Generation. The tool automatically transforms the
diagram into a nesC program that can be compiled and
downloaded from within the graphical environment onto any
TinyOS-supported target hardware.

Simulation. Viptos provides interrupt-level simulation of
actual TinyOS programs, with packet-level simulation of the
network, while allowing the developer to use other models of
computation available in Ptolemy II for modeling various
parts of the system.

TOSSIM is a text-based interrupt-
level simulator for TinyOS
programs. It runs actual TinyOS
code but provides software
replacements for the simulated
hardware, and models network
interaction at the bit or packet
level.

Ptolemy II is a graphical software system for
modeling, simulation, and design of
concurrent, real-time, embedded systems.
Ptolemy II focuses on assembly of concurrent
components with well-defined models of
computation that govern the interaction
between components.

The Viptos utilities, nc2moml and ncapp2moml,
harvest existing TinyOS components and
applications and convert them into a format that
can be displayed as block (and arrow) diagrams
and simulated.

Background
Viptos is built upon TOSSIM and the Ptolemy II VisualSense
environment for network-level modeling and simulation of
wireless sensor networks.

nesC Code Generation
for Target Hardware

Example: Display Incoming
Light Level on LEDs

configuration _SenseToLeds_InWireless_MicaBoard_MicaActor3198 {
}
implementation {
components Main, TimerC, IntToLeds, SenseToInt, DemoSensorC;
SenseToInt.TimerControl -> TimerC.StdControl;
SenseToInt.Timer -> TimerC.Timer[unique("Timer")];
SenseToInt.IntOutput -> IntToLeds.IntOutput;
Main.StdControl -> IntToLeds.StdControl;
Main.StdControl -> SenseToInt.StdControl;
SenseToInt.ADC -> DemoSensorC.ADC;
SenseToInt.ADCControl -> DemoSensorC.StdControl;
}

