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Abstract—Model checking a software system is about verifying
that the state trajectory of every execution of the software satisfies
formally specified properties. The set of possible executions is
modeled as a transition system. Each “state” in the transition
system represents an assignment of values to variables, and a state
trajectory (a path through the transition system) is a sequence
of such assignments. For cyberphysical systems (CPSs), however,
we are more interested in the state of the physical system than
the values of the software variables. The value of model checking
the software therefore depends on the relationship between the
state of the software and the state of the physical system. This
relationship can be complex because of the real-time nature of
the physical plant, the sensors and actuators, and the software
that is almost always concurrent and distributed. In this paper,
we study different ways to construct a transition system model
for the distributed and concurrent software components of a CPS.
We describe a logical-time based transition system model, which
is commonly used for verifying programs written in synchronous
languages, and derive the conditions under which such a model
faithfully reflects physical states. When these conditions are not
met (a common situation), a finer-grained event-based transition
system model may be required. Even this finer-grained model,
however, may not be sufficiently faithful, and the transition
system model needs to be refined further to express not only
the properties of the software, but also the properties of the
hardware on which it runs. We illustrate these tradeoffs using a
coordination language called Lingua Franca that is well-suited
to extracting transition system models at these various levels of
granularity, and we extend the Timed Rebeca language and its
tool Afra to perform this extraction and then to perform model
checking.

Index Terms—Cyberphysical systems, Lingua Franca, Model
checking, Rebeca, Verification.

I. INTRODUCTION

Formal verification is about assuring properties of models.
Whether such properties are also assured in the physical
system being modeled depends on the relationship between
the model and the physical system. When verifying software,
we can often ignore this relationship because we rely on the
hardware to faithfully carry out the operations specified by the
software. Hence, when we prove that the software has some
property, such as never reaching some undesired state, we can
assume that, with very high probability, the physical system
that executes the software will also have that property. The
microprocessor that runs the software, after all, was designed to
do exactly that. When verifying cyberphysical systems (CPS),

where software reads sensor data and issues commands to
physical actuators, ignoring this relationship is more dangerous.
For CPS, verification is ultimately about assuring properties
of the physical world not the software abstraction. This means
that it is not sufficient to study the software alone. We need
to also study its interactions with its environment.

Of course, there is nothing new about formally studying
the interactions of software with its environment. In 1977, for
example, Pnueli was developing temporal logics for reactive
systems [1]. In 1985, Harel and Pnueli singled out reactive
systems as being “particularly problematic when it comes to
finding satisfactory methods for behavioral description” [2].
They defined reactive systems to be those that are “repeatedly
prompted by the outside world, and their role is to continuously
respond to external inputs.” Cyberphysical systems are reactive
in this sense, but also often proactive, prompting the outside
world which then reacts to this software-generated stimulus.
The closed-loop interactivity between the physical world and
the software is what makes these systems so interesting and
challenging.

A cyberphysical system can be viewed as an interacting
pair of reactive systems, one defined in the world of software,
and the other in the world of physics. To prove properties
of such systems, the ultimate goal of verification, requires
combining the “semantics” of physics with that of software. We
immediately run into difficulties, however, because the semantic
worlds of physics and software are radically different and often
mutually incompatible. For example, in formal verification of
software, it is common to model the software as a transition
system that sequentially moves from one state to another,
whereas in physics, there is no such sequential behavior and
even defining the notion of “state” can be problematic, as we
will show.

When we talk about modeling cyberphysical systems, the
problem of combining discrete and continuous models in-
evitably comes to mind. This problem is well addressed by
hybrid systems modeling, analysis, and simulation tools [3]
and is not the topic of this paper. For modeling the timing of
discrete systems, there is also a richness of tools and techniques,
including timed automata [4], [5], timed CCS [6], timed Petri
nets [7], and Timed Rebeca [8]. These tools assume that
the timing of software components and their communication
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fabrics are somehow known or can be effectively modeled
nondeterministically. We will highlight the difficulties posed
by this assumption and explain when weaker assumptions will
suffice.

In this paper, we highlight the difficulties that arise when
developing appropriate coupled abstractions of the physical
system and the software system. We argue that in order to
effectively couple models of software with models of the
physical world, we will need to enrich the modeling frameworks
so that they have more than one timeline. We will illustrate
this by analyzing a particular programming language (Lingua
Franca [9]) that includes a notion of “logical time” and binds
that notion to “physical time” only where the software interacts
with the physical world. We will show that programs in this
language can be translated into models in a timed modeling
language (an extension of Timed Rebeca [8]) that can be
model checked to prove properties about the cyber-physical
combination. We will use a simple illustrative application that,
despite its astonishing simplicity, collides head first with the
modeling problems that we highlight.

A. Running Example: Train Door Controller

Consider a train door that needs to be locked before the train
starts moving [10]. The software controlling train systems is
able to lock the door and then send a command to the train to
start moving. We can build a model of the software, or write
a simple program, and formally verify its correctness. But if
we do not know how and when the door gets locked and the
train starts moving in response to a software command, then
it will do little good to prove that the software never enters
a state where it thinks the door is unlocked while the train is
moving. The necessity to include the physical aspects of the
system, not just its logical ones, is what makes this a CPS.

To illustrate this point, consider in Figure 1 the sketch
of an implementation of a highly simplified version of such
train controller software. This implementation is written using
Lingua Franca (LF) [11], [9], [12], a coordination language
designed for embedded real-time systems. We will fully justify
this choice of language later in this paper. In this use, the code
shown in the figure gets translated into C code that can run on
a train’s microcontrollers. Similar realizations could be built in
any of a number of model-based design languages, including
any of the synchronous languages [13] (SCADE, Esterel, Lustre,
SIGNAL, etc.), Simulink, LabVIEW, ModHel’X [14], Ptolemy
II [15], or ForSyDe [16], to name a few. All will raise similar
issues to those we address in this paper.

The structure of the code is illustrated in Figure 2. It consists
of three components called “reactors,” instances of the reactor
classes Controller, Door, and Train. The main reactor (starting
on line 30) instantiates and connects these components so that
the controller sends a messages to both the door and the train.
These components could be implemented on a single core,
on multiple cores, or on separate processors connected via a
network.

Let’s focus first on the interaction between these components
and the physical world. The Controller reactor class defines a

1 target C;
2 reactor Controller {
3 output lock:bool;
4 output move:bool;
5 physical action external:bool;
6 reaction(startup) {=
7 ... Set up sensing.
8 =}
9 reaction(external)->lock, move {=

10 set(lock, external_value);
11 set(move, external_value);
12 =}
13 }
14 reactor Train {
15 input move:bool;
16 state moving:bool(false);
17 reaction(move) {=
18 ... actuate to move or stop
19 self->moving = move;
20 =}
21 }
22 reactor Door {
23 input lock:bool;
24 state locked:bool(false);
25 reaction(lock) {=
26 ... Actuate to lock or unlock door.
27 self->locked = lock;
28 =}
29 }
30 main reactor System {
31 controller = new Controller();
32 door = new Door();
33 train = new Train();
34 controller.lock -> door.lock;
35 controller.move -> train.move;
36 }

Fig. 1. Lingua Franca code for a very simple door controller example with a
potential defect.

TrainSystem 

Controller 

lock 

move 

Door 
lock 

Train 
move 

Fig. 2. Structure of the program in Figure 1.

physical action named “external_move” (line 5),
which in Lingua Franca is an event that is triggered by
something outside the software system and is then assigned a
logical timestamp that approximates the physical time at which
that something occurred in the physical world [9]. In practice,
in the reaction(startup) block of code (starting on line
6), which executes upon startup of the system, the reactor
could set up an interrupt service routine (ISR) to be invoked
whenever the driver pushes a button to make the door lock and
train move. The ISR would call an LF function schedule to
trigger the action and assign it a timestamp. The reaction
to the external_move action (starting on line 9) will be



invoked when logical time reaches the assigned timestamp.
This reaction sets the outputs named “lock” and “move” to
the Boolean value true. Since that outputs are connected to
the input named “lock” of the door component (line 34) and
the input named “move” of the train component (line 34),
respectively, this results in a message to the door component
and a message to the train component at the logical time of
the timestamp.

The train component has a state variable named “moving”
(line 16) that changes value when it receives a message on its
“move” input port (line 19). The variable has value true when
the train is moving and false when the train is stopped.

The door component has a state variable named “locked”
(line 24) that changes value when it receives a message on its
“lock” input port (lines 23 and 27).

B. A Safety Requirement

For this simple system, the safety property of interest is
that the door be locked while the train is moving. This can be
posed as a formal verification problem, where the goal is to
prove this property. To do so, however, we need a model. And
how to construct the “right” model proves astonishingly subtle,
even for such a trivial example. Let us examine the problem.

In the program shown in Figure 1, the door and train
components have state variables, and we can attempt to verify
that the door is never in the unlocked state while the train is in
the moving state. Depending on how the physical interfaces are
realized, however, this may or may not align with the physical
world. The state of the software system and the state of the
physical world are not assured of aligning.

Even if we limit our scope to just the software system, there
are traps we could fall into. With such a trivial example, it
seems that it should be easy to determine whether the undesired
state can ever be reached, but there are subtleties. What if the
door component and the train component are executing on two
different microprocessors separated by a network? What does
it mean, in this case, for the two to simultaneously be in some
state? This question requires us to confront two surprisingly
difficult and intertwined topics, time (to resolve the meaning of
“simultaneously”) and state. What does it mean for a distributed
system to be in a state?

C. Time and State

We are interested in the dynamics of a system, how it
evolves in time. One way to approach this is to adopt the
Newtonian view of time, which assumes that time advances
uniformly everywhere. We could define the state of a system at
a Newtonian time τ to be the state of each of its components
at time τ . Let us call such a state a Newtonian state.

Modeling a system as the evolution of Newtonian states
amounts to a “God’s eye view.” It assumes an observer that can
simultaneously comprehend the state of each of the components
at an instant in time. This view is intuitive, but problematic in
practice.

In a system involving distributed software, Newtonian state
is particularly difficult to use. We could define the state of the

software at a time τ to be the values of all the variables in the
program at that time. But then, to model the changes of state
over time, we need to construct an extremely detailed model
of the implementation on which the software is executing. The
dynamics (how state evolves in time) is affected by the choice of
microprocessor, contention for shared resources such as busses
and caches, the scheduling policies of the operating system,
and what else is executing on the microprocessors. Moreover,
in a distributed system, the temporal alignment between the
steps of programs running on distinct microprocessors is not
well defined.

The program in Figure 1, despite its simplicity, gives little
hint about what that assignment of values to variables at some
time τ might be. To have any idea, we need a great deal more
information. What microprocessors are running and at what
clock rate? How accurate are the clocks? What other network
traffic is there? What else is running on the microprocessors?
What scheduling policy is being used? Our simple problem
has become an astonishingly complex one.

In practice, a model that accurately describes the execution
of a distributed program as a function of Newtonian time is
intractable. We could abstract the model with nondeterminism,
modeling our lack of knowledge about execution in time with
probability mass functions. But the result will likely still be
intractable because the number of nondeterministic interleav-
ings of state transitions in separate components will explode
exponentially, overwhelming any analysis tool. Somehow, we
need to reign in the complexity.

To solve this problem, we will have to choose a different
definition of “state.” Newtonian state will not do for the
software components. However, because we are interested in
cyber-physical systems, not just cyber systems, we cannot
completely give up Newtonian time. Newtonian time and
Newtonian state are solidly established in the modeling of
physical components.

II. VERIFICATION USING MODEL CHECKING

Model checking is a technique that systematically checks
whether a property holds for a model [17]. The model is
a transition system, a collection of “states” and transitions
between states. There is no requirement that the “states” be
Newtonian states. For model checking to be useful, the only
requirement is that the transition system faithfully models the
system being verified. We can exploit this flexibility to simplify
the problem.

In a transition system, the possible behaviors of the system
are modeled as traces; each trace begins in some state and
sequentially transitions through a sequence of states. In such
a model, when there are concurrent components, a common
approach is to interleave their transitions. For example, if one
component transitions from state A to B concurrently with
another component transitioning from C to D, the transition
system might model this as a nondeterministic choice between a
trace (A,C) → (B,C) → (B,D) and another trace (A,C) →
(A,D) → (B,D).



Under an interleaving semantics, the semantics of a dis-
tributed program is a set of traces representing all allowed
interleavings. Every trace in the set is, by definition, a correct
execution. There is no requirement that concurrent transitions
occur at the same Newtonian time, or even at close Newtonian
times.

In an interleaving semantics, concurrent actions are always
modeled as sequences of atomic actions. “Atomic” here means
that no observer can see a partially executed action. Thus, a
transition is logically instantaneous and indivisible. For any
concurrent behavior in the physical system, such as software
executing on two distinct microprocessors, the model anstracts
them as sequences of atomic actions.

In a CPS, the actions taken by a piece of software may
not really be atomic in this sense. If the software senses or
actuates something in the physical world, then an observer in
the physical world may in fact witness a partially executed
action.

In the theory of concurrent software, one can adopt a
different semantic model that replaces interleaved atomic
actions with simultaneously evolving behaviors. In the above
example, where one component transitions from state A to
B concurrently with another component transitioning from C
to D, we can define our state transition model in a way that
a trace progresses directly from (A,C) to (B,D), without
requiring the components to transition in some order. If these
transitions take time and have side effects in the physical world,
then this model says nothing about the ordering of those side
effects.

Model checking is clearly still possible here. The transition
system will include the states (A,C) and (B,D) and a
transition (A,C) → (B,D). There are no states (A,D) and
(B,C) in the model. The choice to use this model instead
of an interleaving semantics is a choice for the definition of
“state” and “transition.” To perform model checking, however,
we still need a discrete transition system model. This means
that the transition (A,C) → (B,D) must itself be atomic. This
again may not be faithful to the physical program execution
if the transitions A → B and C → D are executing on two
physically separate microprocessors.

When a model checking tool verifies that a property holds, it
provides a proof that the property holds for the model, not for
the physical realization of the model. We must avoid confusing
the map and the territory. It is an error to conclude that the
property holds for the physical realization. Any confidence that
a model-checking proof might give us must be based on an
assessment of how faithful the model is to the physical reality.

Concurrent and distributed programs that do not interact with
the physical world can be effectively modeled by interleaving
the actions of their single-threaded components, as long
as enough care is taken in defining the granularity of the
atomic actions. But building a faithful model for concurrent
programs that interact with the physical environment is not so
straightforward.

Lingua Franca. To help enable such modeling, Lingua
Franca includes in its semantics a notion of logical time.

Software components are called “reactors.” The messages
exchanged between reactors have logical timestamps drawn
from a discrete, totally ordered model of time. Any two
messages with the same timestamp are logically simultaneous,
which means that, for any reactor with these two messages as
inputs, if it sees that one message has occurred, then it will
also see that the other has occurred. Moreover, every reactor
will react to incoming messages in timestamp order. If the
reactor has reacted to a message with timestamp t, no future
reaction will see any message with a lesser timestamp.

If a reactor produces output messages in reaction to an
input, then the logical time of the output will be identical
to the logical time of the input. This principle is borrowed
from synchronous languages [13]. The Lingua Franca compiler
ensures that all logically simultaneous messages are processed
in precedence order, so the computation is deterministic. At a
logical instant, the semantics of the program is a unique least
fixed point of a monotonic function on a lattice [18], so the
computation is deterministic, even if it is distributed across a
network.

Timed Rebeca. Timed Rebeca [8], [19], [20] is an extension
of the Reactive Object Language, Rebeca [21], [22], [23],
and is designed for modeling and verification of distributed,
concurrent and event-driven asynchronous systems with timing
constraints. The original Rebeca language models Hewitt actors
[24], [25], which do not have a model of time and handle
incoming messages in nondeterministic order. Timed Rebeca
adds a model of time, but still handles incoming messages
at each logical time in nondeterministic order. Our extension
supports annotating Rebeca actors, and also their message
servers, with priorities. These priorities can enforce the ordering
constraints on message handlers that are defined by the Lingua
Franca language.

III. LOGICAL-TIME-BASED SEMANTICS

A transition system model, which is needed for model
checking, requires a concept of the “state” of a system at
a particular “instant in time.” It does not require that “time”
be Newtonian time, measured in seconds, minutes, and hours
and aligned to the Earth’s orbit around the sun. Instead, it only
requires a concept of simultaneity, where the “state” of the
system is the composition of the states of its components at
a “simultaneous instant,” whatever that means in the model.
In Lingua Franca, we can define a “simultaneous instant” to
be the endpoint when all reactions at a logical time have
completed. The “state” at that “instant” can be defined to be
the combination of the state variable valuations of all the
reactors at that “instant.” This is the approach commonly
used in synchronous languages, where transient states during
the computation at a logical time are ignored. We call this
interpretation a logical-time-based semantics.

With such a semantics, it is easy to verify that the LF
program in Figure 1 never reaches the undesired state where
the train is moving and the door is unlocked. To perform such
verification formally, we need to build a state-transition model



Fig. 3. Concurrent composition of state machine models for each of the reactors in Figure 1.

Fig. 4. Semantics of Figure 3 as a single state machine.

of the program. We will first do this manually, and later show
how this can be automated.

To build a transition system model, we can use the notation of
Lee and Seshia [26] to first model the concurrent composition
of reactors as a synchronous composition of state machines, as
shown in Figure 3. This notation is based on Statecharts [27],
where a vertical bar separates the three concurrent components,
the “controller,” “train,” and “door.” These components will
be composed according to the principles of synchronous
languages.

The left machine has just one state and two transitions. It
chooses nondeterministically between these transitions issuing
either lock and move both true or lock and move both false. The
middle state machine models the train, which reacts to the move
message by moving or stopping. The right machine models the
door, which reacts to the lock message by locking or unlocking.
According to the principles of synchronous languages, and
consistent with the semantics of Lingua Franca, these machines
react (logically) simultaneously and instantaneously.

Using the methods of Lee and Seshia [26], we can syn-
chronously combine these state machines to obtain the single
state machine shown in Figure 4. This combined state machine
gives the semantics of the synchronous composition of the
original three machines. In the initial state, indicated by the
dangling arrow, the door is unlocked and the train is not
moving. At each logical time, this state machine will react
by nondeterministically either remaining in the same state

(indicated by the self-loop transitions) or changing to the other
state (the guards on all transitions are “true,” indicating that
all are enabled at each logical time). Once the machine is
in the new state, at subsequent logical times, it will similarly
nondeterministically remain in the same state or transition back
to the initial state. This transformation relies on the semantics
of Lingua Franca being rooted in the fixed-point semantics of
synchronous languages [18].

Looking at Figure 4, it is obvious that the model never enters
a state where the train is moving and the door is unlocked.
The transition system model is so simple in this case that there
is no need for a model checker to verify this property.

This approach to verification is sound because it accurately
and correctly models the semantics of the program. But the
astute reader should be nervous. What if the train component
and the door component are realized on distinct microprocessors
connected over a network? In this case, there will be a physical
time delay between when the train begins moving and the door
gets locked, even if there is no logical time delay. In this
case, the verification exercise is simply misleading, and any
confidence that it gives is misplaced.

In the Lingua Franca software, the offending physical state
of the system, where the train is moving and door is unlocked,
is a transitory state occupied briefly during the computation
at a logical time instant. Its duration in logical time is exactly
zero. If the physical system is designed in such a way that the
physical environment can only observe states with non-zero
logical time duration, then we can have confidence in the safety
conclusion.

It is not uncommon to design control system hardware
precisely to make such guarantees. Programmable Logic
Controllers (PLCs), which are widely used to control machinery
in industrial automation, have mechanisms that provide such
guarantees [28], [29]. In particular, PLC software does not
directly interact with physical actuators. Instead, during a cycle
of execution, the software components write commands to
a buffer in memory, and only after the cycle is complete
does the hardware read from that memory and drive the
physical actuators. If the memory goes through transitory
unsafe states during the execution of a cycle, those unsafe
states are guaranteed to have no effect on the physical world.
If Lingua Franca were to be deployed on hardware with such



an I/O system, where a “cycle” is defined by the completion
of all reactions at a logical time, then no safety violation
would occur. However, this conclusion is not based on the
program alone, but rather on a deep and tricky analysis of the
program and the hardware on which it is executing. Moreover,
the PLC-style semantics is difficult to realize on a distributed
system. If the Door component and the Train component are
executing on distinct microprocessors, then ensuring that their
actuations occur only after a logical-time cycles has been
completed requires fairly sophisticated distributed control over
the program execution. Perhaps a better approach is to model
the steps in the execution in more detail and attempt to design
the program to be safe even without such a sophisticated I/O
system. We will do that next.

IV. EVENT-BASED SEMANTICS

A Lingua Franca execution can be modeled as a sequence
of reaction invocations, where each reaction is atomic. We
call such a model an event-based semantics. It is more fine
grained than the logical-time-based semantics of the previous
section in that it includes a sequence of steps performed during
a logical time instant. Each step is one invocation of a reaction
in the Lingua Franca program. Each reaction is triggered by
one or more “events,” where an “event” is either a message
sent between components or an action that has been scheduled
by a call to the schedule function in Lingua Franca. Every
such event occurs at a logical time instant.

For the train door example, an event-based semantics will
be more detailed than that of Figure 4. Even for such a small
program, it is tedious and error-prone to manually construct
such a model. Instead, we have made a small modification
to the Timed Rebeca formalism and its tool Afra [30] so
that it can model Lingua Franca programs. The modification
adds priorities to reactors (called “message servers” in Rebeca)
within a reactor (called a “rebec” in Rebeca), and also adds
priorities to the actors themselves. This enables capturing all of
the scheduling constraints that ensure determinism in a Lingua
Franca program.

A (slightly simplified) Timed Rebeca model of the program
in Figure 1 is shown in Figure 5. Given this model, we can use
Afra model checking tool to get the transition system model and
to check safety properties. The event-based transition system
is shown in Figure 6.

On line 10, the constructor for the Controller sends itself the
message external. On line 14 in the external method the
value of moveP is set to true or false nondeterministically
to show the possibility of presence or absence of the external
message. If this value is changed from the previous period
(comparing moveP and oldMoveP on line 15) then the two
message servers lock and move are called to lock (or unlock)
the door and move (or stop) the train (lines 16 and 17). This
external message is sent to itself every one time unit by
the controller (line 19).

The transitions shown in black in Figure 6 are intermediate
transitions that all occur at the same logical time. The transitions
shown in red coincide with the advancement of logical time.

1 reactiveclass Controller(5) {
2 knownrebecs {
3 Door door;
4 Train train;
5 }
6 statevars {
7 boolean moveP;
8 }
9 Controller() {

10 self.external();
11 }
12 msgsrv external() {
13 boolean oldMoveP = moveP;
14 moveP = ?(true,false);
15 if(moveP != oldMoveP) {
16 door.lock(moveP);
17 train.move(moveP);
18 }
19 self.external() after(1);
20 }
21 }
22 reactiveclass Train(5) {
23 statevars {
24 boolean moving;
25 }
26 Train() {
27 moving = false;
28 }
29 msgsrv move(boolean tmove) {
30 if (tmove) {
31 moving = true;
32 } else {
33 moving = false;
34 }
35 }
36 }
37 reactiveclass Door(5) {
38 statevars {
39 boolean is_locked;
40 }
41 Door() {
42 is_locked = false;
43 }
44 msgsrv lock (boolean lockPar) {
45 is_locked = lockPar;
46 }
47 }
48 main {
49 @priority(1) Controller controller(door,

train):();
50 @priority(2) Train train():();
51 @priority(2) Door door():();
52 }

Fig. 5. Model for the train controller example in Figure 2 constructed in
Timed Rebeca extended with priorities.

Thus, Figure 4 can be understood to be an abstraction of this
transition diagram that aggregates all the intermediate states at
each logical time into one single state.1

In the transition system of Figure 6 2, the state labeled
“S4_0” violates our safety requirement. The train is moving
and the door is unlocked. There is a safe trace, going through

1The self-loops in Figure 4 are represented as the transitions from S6_0 to
S7_0 and back, and S1_0 to S3_0 and back in Figure 6

2Figure 6 is generated automatically by Afra and includes some information
on the transitions that are irrelevant to our discussion in this paper and the
reader may ignore those.



S1_0: 
 controllerMoveNotPresent 

 doorUnlock 
 trainNotMoving

S2_0: 
 controllerMovePresent 

 doorUnlock 
 trainNotMoving

controller.EXTERNAL 
 @(0>>0)

S3_0: 
 controllerMoveNotPresent 

 doorUnlock 
 trainNotMoving

controller.EXTERNAL 
 @(0>>0)

S4_0: 
 controllerMovePresent 

 doorUnlock 
 trainMoving

train.MOVE 
 @(0>>0)

S5_0: 
 controllerMovePresent 

 doorLock 
 trainNotMoving

door.LOCK 
 @(0>>0)

time +=1 
 @(0>>1)

S6_0: 
 controllerMovePresent 

 doorLock 
 trainMoving

door.LOCK 
 @(0>>0)

train.MOVE 
 @(0>>0)

S7_0: 
 controllerMovePresent 

 doorLock 
 trainMoving

time +=1 
 @(0>>0)

controller.EXTERNAL 
 @(1>>1)

S8_0: 
 controllerMoveNotPresent 

 doorLock 
 trainMoving

controller.EXTERNAL 
 @(1>>0)

S9_0: 
 controllerMoveNotPresent 

 doorLock 
 trainNotMoving

train.MOVE 
 @(1>>0)

S10_0: 
 controllerMoveNotPresent 

 doorUnlock 
 trainMoving

door.LOCK 
 @(1>>0)

door.LOCK 
 @(1>>1)

train.MOVE 
 @(1>>1)

Fig. 6. Transition system model generated from the Timed Rebeca model in
Figure 5 generated by Afra [30].

S5_0 instead of S4_0, but the interleaving semantics allows
either trace. Similarly, the state labeled “S10_0” is also not
safe. Here we see the so-called diamond effect that is well-
known in the model checking domain and may be created when
two transitions are enabled in the same state (like in states
“S2_0” and “S8_0” ) and are chosen nondeterministically. If
the I/O system makes these transitory states invisible to the
environment, as could be done using the PLC style of I/O,
then we do not need this finer grained transition system model
and could instead have verified the safety property using the
much simpler logical-time-based model of Figure 4. Without
such an I/O system, however, we have more work to do before
we can have confidence in this system.

A. Refining the Program

The flaw identified by the Afra tool can be corrected with a
slightly more sophisticated Lingua Franca program. A simple
way to do this is to increment the timestamp of an unlock
or move message so that it has a logical timestamp that is

1 target C;
2 reactor Controller {
3 output lock:bool;
4 output unlock:bool;
5 output move:bool;
6 output stop:bool;
7 physical action external:bool;
8 reaction(startup) {=
9 ... Set up external sensing.

10 =}
11 reaction(external)->lock, move {=
12 if (external_value) {
13 set(lock, true);
14 set(move, true);
15 } else {
16 set(unlock:true);
17 set(stop:true);
18 }
19 =}
20 }
21 reactor Train {
22 input move:bool;
23 input stop:bool;
24 state moving:bool(false);
25 reaction(move) {=
26 self->moving = true;
27 =}
28 reaction(stop) {=
29 self->moving = false;
30 =}
31 }
32 reactor Door {
33 input lock:bool;
34 input unlock:bool;
35 state locked:bool(false);
36 reaction(lock) {=
37 ... Actuate to lock door.
38 self->locked = true;
39 =}
40 reaction(unlock) {=
41 ... Actuate to unlock door.
42 self->locked = false;
43 =}
44 }
45 main reactor System {
46 c = new Controller();
47 d = new Door();
48 t = new Train();
49 c.lock -> d.lock;
50 c.unlock -> d.unlock after 100 msec;
51 c.move -> t.move after 100 msec;
52 c.stop -> t.stop;
53 }

Fig. 7. Variant of Figure 1 that manipulates timestamps.

strictly larger than the corresponding stop or lock message.
Such a Lingua Franca program is shown in Figure 7. It has
the structure shown in Figure 8.

Here, we use the after keyword on lines 50 and 51 to
increment the timestamp of the messages by a specified amount
(100 msec). This keyword has exactly the same semantics in
Lingua Franca and Timed Rebeca, so it creates no complications
in translation. With these changes, when the Controller requests
that the train move, it issues a lock message with the timestamp
of the original request and a move message with a timestamp
incremented by 100 msec. When it requests that the train stop,
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Fig. 8. Structure of the program in Figure 7.

the unlock message is similarly delayed. This change required
separating the lock from the unlock signal and the move from
the stop signal because the logical time properties of these
pairs of signals differ. In Figure 2, by contrast, lock and unlock
are carried by a single boolean, as are move and stop.

We can adjust the Timed Rebeca model to match this new
design and re-run the model checker. This time, Afra reveals
a more subtle problem that can occur if the system has no
constraints on the spacing between timestamps of successive
external events. Suppose that the train is stopped and the
door is unlocked and we received external = true at
logical time 0. This will result in a lock message to the
Door with timestamp 0 and a move message to the Train with
timestamp 100 msec. Suppose that we then receive external
= false at logical time 50 msec. This will result in a stop
message to the Train with timestamp 50 msec, overtaking the
move message! But worse, it will send an unlock message
with timestamp 150 msec, and the door will unlock while the
train is moving! This new flaw is revealed by a counterexample
generated by Afra.

This new flaw is not correctable by simply manipulating
logical timestamps. The flaw pertains to the relationship
between physical time and logical time (having no constraints
on the spacing between timestamps of successive external
events that represent physical actions), and our verification
strategy here stays entirely in the world of logical time. A
similarly cross-cutting flaw could occur if the later timestamp
of the move event does not result in a later occurrence of
the train moving physically. Again, this flaw pertains to the
relationship between physical and logical times, a relationship
that is ultimately established not only by the software in
the systems, bur rather by the combination of software and
hardware.

No model perfectly represents any physical realization, of
course, but there are some key missing elements here that are
particular to cyberphysical systems and for which we cannot
offer a general solution. We examine those next.

V. DISCUSSIONS AND LIMITATIONS

The combination of a language like Lingua Franca with
an explicit model of time and a model checking tool like
Timed Rebeca with Afra can prove quite effective for finding

a number of bugs. However, there are some serious limitations
that warrant further research.

Based on our (limited number of) experiments and our
insights, the mapping between Lingua Franca and Timed
Rebeca can be simple as long as we stay in the logical time
domain of Lingua Franca (and as long as the reaction code
in Lingua Franca can be translated to message server code
in Timed Rebeca). We map the reactors of Lingua Franca to
rebecs in Timed Rebeca and map reactions to message servers.
The connections between inputs and outputs in Lingua Franca
show which message servers are called in each rebec. The
after keywords in both languages increase the timestamp of
the messages by the specified value.

Because Rebeca is designed for model checking, Rebeca
models are closed, meaning that there are no external inputs.
The reactions that can be triggered from outside of the Lingua
Franca code (like the physical action named external in
Figure 1) can be modeled as message servers that are invoked
nondeterministically. This nondeterministic call can be modeled
as a self-call from within the same message server, and there is
no need to introduce an extra actor to model the environment.
This message server is first called in the constructor of the
rebec, as shown on line 10 of Figure 5.

Although we performed the mapping from Lingua Franca
to Timed Rebeca by hand, it should be possible to create
a Rebeca target for Lingua Franca and then automate the
translation. When using this target, the body of each reaction
will need to be written in Rebeca’s own language for writing
message servers. This is necessary because Afra analyzes this
code to build the transition system model, and Afra is not
capable of analyzing arbitrary C, C++, or TypeScript code, the
target languages currently supported by Lingua Franca.

Because the Timed Rebeca code will be used for model
checking, we need to be careful regarding the state space
explosion. The external method calls can be problematic here,
and the Timed Rebeca models may have to be carefully crafted
in some places. The logical time intervals over which these
methods can be called has a great effect on the state space
size. If the state space gets too large, model checking becomes
intractable.

A more subtle limitation arises from the fact that we
have only checked how the state of the program evolves in
logical time, not how it evolves in physical time. We consider
it a fascinating open problem to figure out how to adapt
today’s model checking tools to handle such relations between
timelines. Every model checking tool that we know of assumes
a single timeline, but our systems always have at least three.
There is the logical timeline of timestamps, and programs can
be verified on this timeline, proving for example that a safety
condition is satisfied by a state trajectory evolving on this
logical timeline. But in a concurrent and distributed CPS, the
state trajectory is also evolving along a physical Newtonian
timeline, and our proof says nothing about its safety on that
timeline. Moreover, every clock that measures Newtonian time
will differ from every other clock that measures Newtonian
time, so any constraints we impose on execution based on



such clocks may again lead to proofs of safety even though
the physical system is capable of entering unsafe states. We
conjecture that model checking tools can be augmented to
more effectively handle such a multiplicity of timelines.

A final subtle limitation concerns the need to model a
system as a sequence of atomic actions in order to perform
model checking. If the program is executed on a distributed
system, then the interleaving semantics implied by a transition
system model is faithful to the physical realization only if the
atomic actions have no side effects in the physical world or if
we go to considerable effort to build a globally synchronous
implementation that effectively operates as a single sequential
machine.

In the context of Lingua Franca and Rebeca, it is sufficient
to assume that every reaction (message handler) is limited
to changing the state of its own reactor (actor) and sending
output messages. But this will make it difficult to implement a
CPS because it prohibits interaction between the software and
the physical world. Moreover, if the reaction is implemented
in C (or any modern programming language except a pure
functional language), then this assumption cannot be enforced
by the compiler. Nearly every modern programming language
includes, for example, the ability to print messages to a console
(printf in C, for example). This has a side effect in the
physical world (a message appears on the screen). If two
independent reactions print a sequence of output strings each,
then their execution is not atomic, and an observer may see
an arbitrary interleaving of these strings.

When we assert that a design has been “verified” against a
set of formal requirements, we need to make every effort to
make as clear as possible what are the assumptions about the
physical system that make our conclusions valid. There will
always be assumptions, and in any real system deployment,
any assumption may be violated. There is no such thing as a
provably correct system.
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