

Modeling Questions

- Language (syntax, semantics, composition)
- Modeling a distributed physical plant
- Modeling the controller
- Modeling faults and their effects
- How are models used?
- Semantics of anytime computation

Uses of Hybrid Systems

- Analysis
 - Analysis of discrete and continuous controllers interacting with a continuous plant
- Simulation
 - Evaluation of continuous models with discrete mode transitions
- Embedded modeling
 - Embedding of continuous models in deployed systems, integrated into the control algorithms (e.g. for fault identification)

Questions

What's in the OCP, and what's in the application?

- Run-time support for hybrid models? at what cost?
- Design-time support? (e.g. generation of software)
- Anytime computation? (resource management)
- QoS guarantees? Is real-time O/S the only option?
- Admission control?
- Support for domain-specific languages?

Examples Considered

- UAV helicopter control (GATech)
- Free flight conflict avoidance (Rockwell)
- Platooning vehicles (Berkeley)
- Dragonfly Multi-vehicle coord (Stanford)

In all cases, we talked about fault detection and adaptation using modal control.

Free Flight (Rockwell)

Extensions

- UCAVs with accurate models of one another coordinated maneuvers rather than assuming the other aircraft will not react.
- Errors in transmission, faulty/damaged UCAVs
 fault identification and adaptation.
- Create hybrid automaton model and use hybrid Mocha to verify that conflicts do not occur.

Styles of Publish and Subscribe Interactions

- time stamped events?
- globally time stamped?
- reliable delivery?
- ordered delivery?
- signal coordination?
- synchronous delivery?
- blending of multiple publishers?
- dynamic redirection/resourcing?
- persistence?
- history?

OCP Domain #1

- time stamped events? yes
- globally time stamped? no
- reliable delivery? yes
- ordered delivery? no
- signal coordination? yes
- globally synchronous delivery? no
- blending of multiple publishers? no
- dynamic redirection/resourcing? yes
- persistence? no
- history? no

What is a Domain

The definition of the interaction of components, and the software that supports this interaction.

Multi-domain modeling means:

- Hierarchical composition
 - heterogeneous models allowed
- · Domains can be specialized
 - avoid creeping featurism
 - enable verification
- Data replication in OCP/Boldstroke is another domain
 - separation of communication mechanisms.

What technology can be shared when building domains?

- Abstract syntax
- Type systems
- Components
- Interfaces

Domains After Domain 1

- High-sample-rate, periodic event handling
- Stream-based component interaction
- Control reconfiguration management
- Time-triggered, synchronous modeling
- Continuous-time domain

Domains need to be able to:

- Share a consistent notion of time
- Share signals/params across levels of the hierarchy.
- Export interfaces to other domains
- Import components designed in another domain

Milestones

- Use OCP in demonstrations in each of
 - Active state models
 - On-line control customization
 - Coordinated multi-modal control
- Steps
 - Define the challenge problems that justify domains.
 - Work out how mode transitions and other control reconfiguration are handled in the OCP.
 - Work out the interaction semantics (domains) supported by the OCP (mode transition control? continuous modeling? synchronous interactions?)

Architecture to Avoid

Poor common infrastructure. Weak specialization. Poor resource management and sharing. Poor planning.

Also to Avoid

Elegant, unified, and beautiful, but rigid, inflexible, and difficult to adapt. Plus, it takes 100 years to build.

Elegant Federation

Elegant federation of heterogeneous models.

Source: Kaplan McLaughlin Diaz, R. Rappaport, Rockport, 1998

Two Rodeo Drive, Kaplan, McLaughlin, Diaz