Ptolemy Il - Heterogeneous
Modeling and Design in Java

Principal Investigator,
: . Edward A. L
The Ptolemy project studies ward A Lee

modeling, simulation, and design Iechnical Staff
Christopher Hylands

of concurrent, real-time, Mary P. Stewart
embedded systems. The focus bostdocs
is on assembly of concurrent Bart Kienhuis

components. The key

underlying principle in the Grad Students

project is the use of well- John Davis, 11 Steve Neuendo

i i Chamberlain Fong ~ Jeff Tsay
defined models o_f compu_tatlon Bilung Leo Yuhong Xiong
that govern the interaction JieLiu

between components. Xiaojun Liu

Embedded Systems
.|

= Telephones

= Pagers

~ Cars .

= Audio equipment —{i;:b_‘-"' only 2% of

= Aircraft N computers

< Trans ! The fate of today are first
= Appliances W

~ Toys ‘computers and foremost
= Security systems Eilacking . “computers”
= Games ~ Interaction with

= PDAs 4 s -~

«~ Medical diagnostics . physmal_ —

~ Weapons " wprocesses.

= Pacemakers o

= Television

= Network switches

=

What we are trying to avoid:
.|

§ Embedded

b software may
end up like this
+ as it scales up.

- m - . Poor common
: d’"{% infrastructure.
= oy Weak
specialization.
- Poor resource
management
and sharing.

% Poor planning.

AT
BN IO

Elegant Federation

Elegant federation of
heterogeneous models.

Source: Kaplan McLaughlin Diaz, R. Rappaport, Rockport, 1998

Two Rodeo Drive, Kaplan, McLaughlin, Diaz

&2

Component-Based Design

location transparency
hierarchy

modularity
reusability

Abstract Syntax
.|

ports relation

entity
= Ports and relations in black

= Entities in blue

=3

One Class of Semantic Models:
Producer / Consumer
.

process { process {
channel
write(); @ »@ read();
port port/
} }
receiver

« Are actors active? passive? reactive?
« Are communications timed? synchronized? buffered?

Domains — Provide semantic
models for component interactions
.|

= CSP — concurrent threads with rendezvous
= CT — continuous-time modeling

= DE — discrete-event systems

« DT — discrete time (cycle driven)

= PN — process networks

= SDF — synchronous dataflow

= SR — synchronous/reactive

Each of these defines a component ontology and an
interaction semantics between components. There are
many more possibilities!

4

Discrete-Event Modeling

The discrete-event
(DE) domain in
Ptolemy 11 models
components
interacting by
discrete events
placed in time. A
calendar queue
scheduler is used for
efficient event "
management, and =Ty
simultaneous events i || |
are handled ol ||'
systematically and o
deterministically.

LTINS

Continuous-Time Modeling

The continuous time
(CT) domain in

e

Ptolemy 11 models
components
interacting by
continuous-time
signals. A variable-
step size, Runge-
Kutta ODE solver is
used, augmented with
discrete-event
management (via
modeling of Dirac
delta functions).

DT Diagram for
Robotic Arm Control

coal], SERINL |
WNRUT g [P i
| | cormoL

—3
of FORMNED (& ShouLDeR :
% BASE | | pgs

KNS, s
ek SIC)

- SDF graph is used instead of an object hierarchy tree
- 4 degrees of freedom (5 DOF if including gripper)
- angles and polygon vertices are used as tokens

What is a Domain
The definition of the interaction of components, and the software
that supports this interaction.

Multi-domain modeling means:

=« Hierarchical composition
- heterogeneous models allowed

= Domains can be specialized
- avoid creeping featurism
- enable verification

= Data replication in OCP/Boldstroke is another domain
- separation of communication mechanisms.

Ptolemy Il — Our Software
Laboratory

w &
* Ptolemy Il —

- Java based, network integrated
- Many domains implemented

- Multi-domain modeling

- XML syntax for persistent data
- Block-diagram GUI

- Extensible type system

- Code generator on the way

http://ptolemy.eecs.berkeley.edu

Embedded Software in Java
2121217219

Choosing the right design method has far more impact than faster software
Multi-domain design permits using the best available modeling techniques
Threads, objects, and Ul infrastructure helps with both.

Network integration of Java promotes sharing of modeling methods.
Transportable code allows for service discovery and ad-hoc federation
Java performance and infrastructure is rapidly improving.

el

kemel —— =" graph
math
Componentport [kemelwi | DirectedAcyclicGraph [ArrayMath
i Attribute DirectedGraph | Complex
(CompositeEntity | crossRefList Graph ExtendedMath
Entity llegalActionException finet iy Fraction
Port InternalErrorException =
[Relation InvalidStateException -
KernelException T
}———————"] NameDuplicationException
Nameable —L "
1——| NamedList =1 lata —
NamedObj
| NoSuchitemException ‘data.expr |
PtolemyThread | ComplexMatrixToken
|| Tnagpon o | =" s
kernel.event D oken
[ASTPtFunctionNode
[TopologyChangeFailedException DoubleToken
o chemiotanoes ek BT rcicosihoce
[TopologyEvent IntToken ASTPtLogicalNode
TopologyListener LongMatrixToken | oS TpuvethodCallNode
[TopologyMutiicaster LongToken [ASTPIProductNode k I I d h
ekernel (clusterd graphs)
— g'é;gzﬁ‘l‘@n [ASTPtRootNode
JASTPtSumNode
[e eactor (executable models)
actor stringToken
JITPtParserState
Acor Token H
= elass edata (tokens, expressions)
omicscr oaramoterevent
-ompositeActor [ParameterListener H
ST e [caerimse esch (API for Uls)
[Fon schematic or Uls
Executable FIFOQueue PtParserConstants. H
troreer egraph (graph algorithms)
IonscuI\onUs!ener PtParserTreeConstants
ort |SimpleNode H
|ORelation Token o h (h Ig h)
mawlbux | TokenMgrError m at m at a O rl t m S
B iiyFuncions - .
INoRoomException I I I
, eplot (plotting utilities
QueueReceiver T L chematc pot
Receiver =
LogicAnalyzer
TypecantictErcepton _Lj R
TypeTerm actorli EniiyType) kernel
[TypedActor (i icon Fiot
:We‘;'é'“'“‘m;) Const [aeEy PlotApplet 3
S
[oedioron B PP Pltppicaton ComponentEntity
T pediomeision
S ComponentPort
PlotLi H
NotiyThread b Schematceniy Ploeppet ComponentRelation
processDirector er [oy ey N §
ProcessReceiver chematicPort
ProcessThreat i icRela Proreph CompositeEntity
TerminateProcessException ||Soteet [XMLEIement Entny
Switch
actor sched XvPlot Port
[NotSchedulableException A .
|Scheduler
| StaticSchedulingDirector Relatlon
Kernel.util Package
INameable
J— 1
I I
Ir\umbulel | _1_ P
s P : Ptolemy Il Key
L e
—_— 0.1
T Classes
| == 1 I
1 1 | Kernel Package
- e ol
Entity | ™ G qen _ 1 0-netation |
Port | link
! —| —
r - T i
| F ! UML static structure
1 kcomponentPory — .
: | diagram for the key
[«Interface» 0.0 container] I I M th k I
classes In e Kernel,

To

B

U
—— -

Actor

1

containef0.1

Actor Package

0.n

kernel.util, and actor

packages.

ComponentEntit

CompositeEntit

0..n container

0.1

=3

Kernel Package

The Ptolemy 11 kernel

— COF':”IECﬁOH provides an abstract

Lk e ik syntax - clustered
graphs - that is well
suited to a wide
variety of domains,
ranging from state
machines to process
networks. Here is a
simple graph with
three interrelated
entities.

Port

Basic Kernel Classes
]

NamedObj

<l CrossRefList

Port 1.1

-_container : Entity
-_relationsList : CrossRefList

+Port()
Entity container +Port(w : Workspace)
0.1 o.n +Port(container : Entity, name : String))| link Relation
- portList : NamedList +connectedPorts() : Enumeration
FEntiy() containee |+isLinked(r : Relation) : boolean 0..n _portList : CrossRefList

+isOpaque() : boolean

+Entity(name : String) f+Relation()

[+Entity(w : Workspace, name : String| ::!"tEd_RslTﬁfns() : Enumeration 0..n hRelation(name : String)
+connectedPorts() : Enumeration ink(r - Relal _"?”) - [+Relation(w : Workspace, name : String)
+numLinks() : int link

[+connectionsChanged(p : Port)
+getPort(name : String) : Port
[+getPorts() : Enumeration
+inkedRelations() : Enumeration +unhnk/§|l() FunlinkAll()

+newPort(name : String) : Port # link(r : Relation) f#_checkPort(p : Port)
[+removeAllPorts() J#_getPortList() : CrossRefList

+setContainer(c : Entity) [+inkedPorts() : Enumeration

+unlink(r : Relation) FnumLinks() : int

tHinkedPorts(except : Port) : Enumeration

#_addPort(p : Port)
#_removePort(p : Port)

Clustering

4 ~

dangling\
AtomicEntity
opaque Port

transparent
Port

transparent
Port

L transparent CompositeEntity

N~

N Composite
entities and

11 provide a
simple and
powerful,
domain-
independent

toplevel CompositeEntity/ abstraction

mechanism

The ports deeply connected to the
red port are the blue ones.

ports in Ptolemy

Actor Package

Basic Transport:

receiver.put(t)

send(0.t

I0Port

IORelation

Receiver
inside port

Services
*broadcast
emulticast
*busses
ecacheing topology info
eclustering
eparameterization
*typing

" epolymorphism

10

Manager and Directors

Directors are
domain-specific. A
composite actor

Hierarchical Heterogeneity: with a director
becomes opaque.
Opaque Transparent| The Manager is
Composite Composite) domain-
Actor ACt;l\ independent.
EO \

i=7Al D2: local director

Example: Sticky Masses

The stickiness is exponentially decaying with respect to time.

11

Sticky Masses: Block Diagram

out = (K 'y 1+ k,*y, -in)((m +m,)

Sticky Masses: Simulation

=12

Hierarchical View

sensors controller actuafors
i i \
|

bang-bang/ PID \/

Mutations
|
The kernel.event package provides support for
= Queueing requests for topology changes
= Processing requests for topology changes
= Registering listeners
« Notifying listeners of changes

Thus, models with dynamically changing
topologies are cleanly supported, and
the director in each domain can control
when mutations are implemented.

13

Creating a Model
.|

= Pick one or more domains

= Choose applet or application

« Choose Vergil, MoML, or Java code

=« Design control interface

= Soon: Choose distribution architecture

Ptolemy 11 uses features in JDK 1.2, and hence
requires use of the Java plug-in with current
released browsers.

Vergil — An Extensible Visual Editor

Live editor :;-:-:wm - . J.E_H.l
with XML e ;

persistent file famm F i] T
e | |

format. : i (]

= i C:iptllptolermytappsilego’Drivel:

ScaleX i i 1 1 i 2 L3 T ¥ L] (L)

LegoDriver14
SumR)

TiltSensor

ScaleY

14

Internet explorer and
Netscape have different

HTML plug-in architectures :-(
|

<CBJECT cl assi d="cl si d: 8AD9C840- 044E- 11D1- B3E9- 00805F499D93"
wi dt h="700"
hei ght =" 300"
codebase="http://java. sun. conf product s/ pl ugi n/ 1. 2/ j i nstal | - 12- wi n32. cab#Ver si on=1, 2, 0, 0" >
<PARAM NAME="code" VALUE="doc.tutorial.Tutorial Applet.class">
<PARAM NAME="codebase” VALUE="../..">
<PARAM NAME="type" VALUE="appl i cati on/ x-j ava- appl et ; versi on=1. 2" >
<COMVENT>
<EMBED type="appl i cati on/ x-j ava- appl et ; ver si on=1. 2"
wi dt h="700"
hei ght =" 300"
code="doc/tutorial/Tutorial Appl et . cl ass"
codebase="../.."
pl ugi nspage="htt p: //j ava. sun. conf product s/ pl ugi n/ 1. 2/ pl ugi n-i nstal | . ht ni ">
</ COVMENT>
<NCEMBED>
No JDK 1.2 support for applet!
</ NCEMBED>
</ ENBED>
</ CBJECT>

Simple Applet — Directly in Java
|

package doc.tutori al

i mport ptol eny. domai ns. de. gui . DEAppl et ;
i mport ptoleny.actor.lib.d ock

i nport ptoleny.actor.gui.TinedPlotter;

public class Tutorial Appl et extends DEAppl et {
public void init() {
super.init();
try {
Cl ock clock = new O ock(_toplevel,"clock");
TimedPlotter plotter =
new Ti medPl otter(_toplevel ,"plotter")

_topl evel.connect (cl ock. output, plotter.input)

} catch (Exception ex) {}

15

Compiling and Running
G

cd $PTI 1/ doc/tutorial
cp Tutorial Appletl.java Tutorial Appl et .java
javac -classpath .. Tutorial Appl et.java

appl etvi ewer tutorial.htm

XML Model Specification (MoML)
|

<?xm version="1.0" standal one="no"?>

<! DOCTYPE nodel SYSTEM "DTD | ocation">

<nmodel cl ass="cl assnane">
<entity nane="A" cl ass="cl assnane"></entity>
<entity nane="B" cl ass="cl assnane"></entity>
<entity name="C' class="cl assnane"></entity>
<rel ation nane="r1"></rel ati on>
<rel ation nane="r2"></rel ati on>
<link port="A out" relation="r1"/>
<link port="B.in" relation="r1"/>
<link port="C out" relation="r2"/>
<link port="B.in" relation="r2"/>

</ nodel >

16

Infrastructure Support

=« Expression language

= Type system

=« Math package
= Graph package
« Plot package

= GUI package

= Actor library

=)
Fila - Spacial

[T

!

00 01 02 03 04 45 DA dF 0B 0@ A4

i if

Type System Infrastructure

Fir Gl e on Cemradu e

L T O I L SR

R B TP Y e r—r

Dammma

e []

L dmpiaring
= rypee le et Ly gt poraen e
rarwe b i dnd, Euchracs

Bl
| E metmige S vweel B Gouo 5 e B SEeefigel B Dol) D 5 som s

Ptolemy 11 has an
extensible type system
infrastructure with a
plug-in interface for
specifying a type
lattice. At the left, an
applet illustrates type
resolution over a
(simplified) type
lattice representing
data types exchanged
between actors.

17

Example - Type Inference

Output of type
Token - pure event
with no value

Input of type Token
- anything will do

—

1l $— 4

Token

Opaque port -
types propagated
from inside

Polymorphic output
- type depends on
the parameters

Polymorphic actor -
uses late binding in
Java to determine
implementation of
addition (add()
method in Token).

Lossless runtime
type conversion

Nascent Generator Infrastructure
C]

Ptolemy 11 modg

All actors will be
given in Java, then
translated to
embedded Java, C,
VHDL, etc.

First version created
by Jeff Tsay.

Domain semantics defines

O Cosme s ma v i s ry S s i ol

] " g_goulwawpeﬂ:l

abstract syntax tree

—

scheduler

munication, flov‘ of control

v
Schedule:
- fire GaussianO
- fire Rampl
- fire Sine2
- fire AddSubtract5

- fire SequenceScope10

code generator 1

for (inti =0; i <plus.getWdth); i++) {

it (plus.hasToken(i)) {

it (sum==null) {
sum = plus. get (i);
} else {
sum = sum add(pl us.get(i));
}
}
b

target caode

18

Generator Approach
]
= Actor libraries are built and maintained in Java
- more maintainable, easier to write
— polymorphic libraries are rich and small

= Java + Domain translates to target language
- concurrent and imperative semantics

« Efficiency gotten through code transformations
- specialization of polymorphic types
- code substitution using domain semantics
- removal of excess exception handling

Code transformations (on AST)
G

/1 Oiginal actor source
Token t1 = in.get(0);

Token t2 = in.get(1);

l specialization of Token declarations

Il Wth specialized types The Ptolemy 11 type system
IntMatri xToken t1
I nt Matri xToken t 2

in. get(0); supports_polymorphic act_ors with
in. get (1) propagating type constraints and
. i static type resolution. The
resolved types can be used in
optimized generated code.

See Jeff Tsay, A Code Generation Framework for Ptolemy I1

19

Code transformations (on AST)
.|

/1 Wth specialized types Domain-polymorphic code is
replaced with specialized code.

Extended Java (from Titanium
project) treats arrays as

IntMatri xToken t1 = in.get(0);
IntMatri xToken t2 = in.get(1);
out.send(0, t1.multiply(t2));

primitive types.

l transformation using domain semantics

/'l Extended Java with specialized conmuni cation
int[]1[] t1 = _inbuf[O][_inCffset = (_i nOFfset+1) %] ;
int[][] t2 = _inbuf[1][_inOfset = (_inOf fset+1) %] ;
_outbuf[_outOffset = (_outOffset +1) 9] = t1 + t2;

See Jeff Tsay, A Code Generation Framework for Ptolemy 11

Code transformations (on AST)

/1l Extended Java with specialized communication
int[][] t1 = _inbuf[0][_inOfset = (_inOfset+l) %] ;

int[][] t2 = _inbuf[1][_inOfset = (_inCffset+l) %] ;
_outbuf[_outOifset = (_outOfifset +1)98] = t1 + t2;

l convert extended Java to ordinary Java

/] Specialized, ordinary Java
int[][] t1 = _inbuf[O][_inOfset = (_inOffset+l) %] ;
int[][] t2 = _inbuf[1][_inOfset = (_inOffset+1) %] ;
_outbuf[_outOffset = (_outOffset +1) 98] =
IntegerMatrixMath.multiply(tl, t2);

See Jeff Tsay, A Code Generation Framework for Ptolemy I1

=20

Software Practice
L]

=« Object models in UML

=« Design patterns

« Layered software architecture
= Design and code reviews

=« Design document

& Nightly build

= Regression tests

= Sandbox experimentation

=« Code rating

UML (Unified Modeting Language)
.

We make _ : _ J
extensive use of o SRR
static structure sl T o
diagrams, and EL SR
much less use of
other UML R
languages. re

TR Hamml. i

e (T

21

Design patterns
|

« A high-level vocabulary for
describing recurring patterns:

- Strategy - process—®
— Composite Client G
_ Factory process()
Strate
- Template method process()gy
= A way of factoring experience 4

into concrete terminology | |

= We studied the most CStrategyl | | CStrategy2
important patterns from process() process()

Gamma et al

Design and Code Reviews
|

« Objective is “publishable software”

= Defined roles for participants
- Author has the last word

= Mechanism for new group members to
learn to differentiate good from bad

software. All technical reviews are based on the
idea that developers are blind to some
of the trouble spotsin their work...

Steve McConnéll

22

= What is this about really?
- Confidencein quality
- Commitment to stability

Code rating
|

=« A simple framework for

- quality improvement by peer
review

- change control by improved
visibility
= Four confidence levels
- Red. No confidence at all.

- Passed design review.
Soundness of the APIs.

- Green. Passed code review.
Quality of implementation.

- Blue. Passed final review.
Backwards-compatibility
assurance.

How we do areview
]

= Top level
- The author announces that the package is ready for review
- The moderator organizes and moderates the review

- The author responds to the issues raised in the review, redesigning or
reworking as necessary

- The author announces the new rating.
=« In the review

- The moderator runs the meeting and keeps the discussion on track; and
acts as reader (in our process).

- The reviewers raise issues and defects

- The author answers questions

- The scribe notes raised issues and defects
- Nobody attempts to find solutions!

Roles define and
clarify responsibility

23

What were the review benefits?
L]

& Students
- better design and more confidence.
- good feedback about documentation and naming issues
revealed quite a few flaws
an affirmation that your architecture is sound
encourage other people in the group to reuse code
- forcing function to get documentation in order
- my coding style changed
&« Staff
- exposed quite a few design flaws
- caught lots of minor errors, and quite a few insidious errors

Design in an Abstract Universe

When choosing syntax and
semantics, we can invent
the “laws of physics” that
govern the interaction of
components.

As with any such laws, their
utility depends on our
ability to understand
models governed by the
laws.

Magritte, Gelconde

=24

