
�1

UC Berkeley
Mobies Technology Project

PI: Edward Lee
CoPI: Tom Henzinger

Process-Based Software
Components for Networked
Embedded Systems

Example:An Automotive Active-Suspension System

Vehicle
Dynamic

DSP

RAM mP

ASIC

I/O

DXL

Hydraulic
Actuator

Road Surface

Steering
Breaking

Acceleration
...

Discrete-Event

Continuous-Time

Finite State
Machine

Heterogeneous Modeling

�2

Discrete Event

Continuous Time

Finite State Machine

• physical environment,
• analog circuits,
• sensors/actuators,
• …

• digital circuit,
• real-time software,
• …

• control sequences,
• operation modes,
• ...

...

Continuous & Discrete Dynamics

Actuator

controller

Br Acc

Ba

car model

vehicle
dynamics DXL

S

Components and Composition

�3

Abstract Syntax for
Component-Based Design

hierarchy
connectivity

Not Abstract Syntax

� Semantics of component interactions
� Type system
� File format (a concrete syntax)
� API (another concrete syntax)

An abstract syntax is the
logical structure of a design.
What are the pieces, and how
are they related?

�4

The GSRC Abstract Syntax

� Models hierarchical connected components
– block diagrams, object models, state machines, …
– abstraction and refinement
– recursive constructs

� Supports classes and instances
– object models
– inheritance
– static and instance variables

� Specified by concrete syntaxes
– sets and functions
– UML object model
– XML file format

Abstract Syntax Object Model

Constraints (in OCL?):
• Links do not cross levels
of hierarchy
• If interface i is derived
from j then it inherits its
ports and properties
• An instance hierarchy has
only singleton entities.
• A role hierarchy has some
non-singleton entities.

+derivedFrom(in i : Interface) : bool
+ports() : SetOfPorts
+properties() : SetOfProperties

«type»
Interface

Port1

0..*

Property

1

0..*

+containedEntities() : SetOfEntities
+interface() : Interface
+internalLinks() : SetOfInternalLinks
+isRoot() : bool
+isSingleton() : bool

Entity
1

*

+entity1 : Entity
+port1 : Port
+entity2 : Entity
+port1 : Port

InternalLink

1 0..*

2*

2 *

+port1 : Port
+entity2 : Entity
+port1 : Port

InterfaceLinks

1

0..*

2

*

2

*

+root() : Entity
+unroll() : Hierarchy

Hierarchy

1..*

1

�5

Component Semantics

Entities are:
� States?
� Processes?
� Threads?
� Differential equations?
� Constraints?
� Objects?

process {
…
read();
…

}

One Class of Semantic Models:
Producer / Consumer

process {
…
write();
…

}

channel
port port

receiver

� Are actors active? passive? reactive?
� Are communications timed? synchronized? buffered?

�6

Domains – Provide semantic models
for component interactions

� CSP – concurrent threads with rendezvous
� CT – continuous-time modeling
� DE – discrete-event systems
� DT – discrete time (cycle driven)
� PN – process networks
� SDF – synchronous dataflow
� SR – synchronous/reactive
� PS – publish-and-subscribe

Each of these defines a component ontology and an
interaction semantics between components. There
are many more possibilities!

Component Interfaces

� Represent not just data types, but
interaction types as well.

Int

Double

SDF1

DE1

value conversion behavior conversion

�7

Approach – System-Level Types

General

String

ScalarBoolean

Complex

Double

Long

Int

NaT

actoractor

represent interaction semantics
as types on these ports.

Need a new type lattice representing
subclassing & ad-hoc convertibility.

Type Lattice

NaT

CT1

PN1

SDF1

DE1

CSP1

DP

Simulation relation

Achievable properties:
� Strong typing
� Polymorphism
� Propagation of type constraints
� User-defined types
� Reflection

�8

SDF Receiver Type Signature

has
Token

no
Token

p/v g/t

g/e

h/1g/t

h/0

p/v

SDF1
Input alphabet:

g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception

DE Receiver Type Signature

Input alphabet:
g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception

has
Token

no
Token

p/v g/t

h/1g/t

p/v

g/eh/0
p/v

DE1

Put does not
necessarily
result in
immediate
availability of
the data.

This automaton simulates the previous oneThis automaton simulates the previous one

�9

System-Level Types

� Declare dynamic properties of component interfaces
� Declare timing properties of component interfaces

Benefits:
� Ensure component compatibility
� Clarify interfaces
� Provide the vocabulary for design patterns
� Detect errors sooner
� Promote modularity
� Promote polymorphic component design

Our Hope –
Polymorphic Interfaces

actoractor

polymorphic interfaces

�10

More Common Approach –
Interface Synthesis

actoractor

protocol
adapter

rigid, pre-defined interfaces

Ptolemy II – A Starting Point?

Ptolemy II –
– Java based, network integrated
– Many domains implemented
– Multi-domain modeling
– XML syntax for persistent data
– Block-diagram GUI
– Extensible type system
– Code generator on the way

http://ptolemy.eecs.berkeley.edu

�11

Type System Infrastructure

Ptolemy II has an
extensible type system
infrastructure with a
plug-in interface for
specifying a type
lattice. At the left, an
applet illustrates type
resolution over a
(simplified) type
lattice representing
data types exchanged
between actors.

Nascent Generator Infrastructure
Domain semantics defines communication, flow of control

Ptolemy II model

scheduler

Schedule:
- fire Gaussian0
- fire Ramp1
- fire Sine2
- fire AddSubtract5
- fire SequenceScope10

parser

method call

if

block

method call

block

code generator

…

for (int i = 0; i < plus.getWidth(); i++) {

if (plus.hasToken(i)) {

if (sum == null) {

sum = plus.get(i);

} else {

sum = sum.add(plus.get(i));

}

}

}

…

All actors will be
given in Java, then
translated to
embedded Java, C,
VHDL, etc.

target codeabstract syntax treeFirst version created
by Jeff Tsay.

�12

Generator Approach

� Actor libraries are built and maintained in Java
– more maintainable, easier to write
– polymorphic libraries are rich and small

� Java + Domain translates to target language
– concurrent and imperative semantics

� Efficiency gotten through code transformations
– specialization of polymorphic types
– code substitution using domain semantics
– removal of excess exception handling

Code transformations (on AST)

// Original actor source

Token t1 = in.get(0);

Token t2 = in.get(1);

out.send(0, t1.multiply(t2));

specialization of Token declarations

// With specialized types

IntMatrixToken t1 = in.get(0);

IntMatrixToken t2 = in.get(1);

out.send(0, t1.multiply(t2));

The Ptolemy II type system
supports polymorphic actors with
propagating type constraints and
static type resolution. The
resolved types can be used in
optimized generated code.

See Jeff Tsay, A Code Generation Framework for Ptolemy II

�13

Code transformations (on AST)

transformation using domain semantics

// With specialized types

IntMatrixToken t1 = in.get(0);

IntMatrixToken t2 = in.get(1);

out.send(0, t1.multiply(t2));

Domain-polymorphic code is
replaced with specialized code.
Extended Java (from Titanium
project) treats arrays as
primitive types.

// Extended Java with specialized communication

int[][] t1 = _inbuf[0][_inOffset = (_inOffset+1)%5];

int[][] t2 = _inbuf[1][_inOffset = (_inOffset+1)%5];

_outbuf[_outOffset = (_outOffset+1)%8] = t1 + t2;

See Jeff Tsay, A Code Generation Framework for Ptolemy II

Code transformations (on AST)

convert extended Java to ordinary Java

// Extended Java with specialized communication

int[][] t1 = _inbuf[0][_inOffset = (_inOffset+1)%5];

int[][] t2 = _inbuf[1][_inOffset = (_inOffset+1)%5];

_outbuf[_outOffset = (_outOffset+1)%8] = t1 + t2;

// Specialized, ordinary Java

int[][] t1 = _inbuf[0][_inOffset = (_inOffset+1)%5];

int[][] t2 = _inbuf[1][_inOffset = (_inOffset+1)%5];

_outbuf[_outOffset = (_outOffset+1)%8] =

IntegerMatrixMath.multiply(t1, t2);

See Jeff Tsay, A Code Generation Framework for Ptolemy II

�14

Near-Term Goals

� Interface definitions for relevant domains
– Those with potential for real-time execution

� Abstraction of real-time properties
– requirements and performance

� Evolution of generator infrastructure
– Demonstrate synthesis of embedded Java

� Explore real-time Java
– Better safety, network integration

Process

� Website shared with Phase II Berkeley project
– mailing list with archiving
– discussion forums
– CVS archive

� Quasi-weekly meetings
– Comparing software architectures
– Comparing approaches

� Software
– nightly builds
– automated test suite
– design and code reviews
– UML modeling

� Embedded systems lab
– Construction starts in July

