UC Berkeley
Mobies Technology Project

-Iﬂllillllillmm"'-

PIl: Edward Lee
CoPI: Tom Henzinger

Heterogeneous Modeling

Discrete-Event

Continuous-Time

ample:An Automotive Active-Suspension System

ol

Continuous & Discrete Dynamics

Discrete E

- digital circuit,
_+ real-time software

Continuous Time

I~ /\/
« physical environment

« analog circuits,
« sensors/actuators,
.

Finite State Machine

O

« control sequences,
» operation modes,
RN

Components and Composition

i !
» ~ vehicle s

G d i
/; ynan:lc;/ B
’ 1

/ A , \
IO
47 N
y,/ v

°?

Abstract Syntax for
Component-Based Design

hierarchy
connectivity

Not Abstract Syntax
.|

e Semantics of component interactions

e Type system

e File format

o API

An abstract syntax is the
logical structure of a design.

What are the pieces, and how

are they related?

o3

The GSRC Abstract Syntax
|

e Models hierarchical connected components
- block diagrams, object models, state machines, ...
- abstraction and refinement
- recursive constructs
e Supports classes and instances
- object models
- inheritance
- static and instance variables
e Specified by concrete syntaxes
- sets and functions
- UML object model
- XML file format

Abstract Syntax Object Model
G

Property

Hierarchy
«type» 0.* . .
Interface J Constraints (in OCL?):

+root() : Entity

+unroll(: Hierarch 1 i
= =y +derivedFrom(in i : Interface) : bool LInkS dO not cross |eVe|S
1% +ports() : SetOfPorts Of hierarchy
+properties() : SetOfProperties 1 Port . o .
! o - If interface i is derived
Entity from j then it inherits its
2 ports and properties
+containedEntities() : SetOfEntities InternalLink 2 - .
+interface() : Interface > e « An instance hierarchy has
ﬁnternaILinks() : SetOfinternalLinks| 1 0. |+portl: ﬁ’on H e
:::2;‘;‘.2‘;23".' . s ot only singleton entities.
: T*P‘”‘lipm‘ « A role hierarchy has some
2 1 2 non-singleton entities.
InterfacelLinks
+portl : Port
0.* |+entity2 : Entity|
+portl : Port

o4

Component Semantics
e

Entities are:

e States?

e Processes?

e Threads?

e Differential equations?
e Constraints?

e Objects?

One Class of Semantic Models:
Producer / Consumer

process { process {
e h I e
write(); @ channe »@ read();
. port port/T"
} }
receiver

e Are actors active? passive? reactive?
e Are communications timed? synchronized? buffered?

Domains - Provide semantic models
for component interactions
|

CSP - concurrent threads with rendezvous
CT - continuous-time modeling

DE - discrete-event systems

DT - discrete time (cycle driven)

PN - process networks

SDF - synchronous dataflow

SR - synchronous/reactive

PS - publish-and-subscribe

Each of these defines a component ontology and an
interaction semantics between components. There
are many more possibilities!

Component Interfaces

e Represent not just data types, but
interaction types as well.

value conversion

[15)

Approach - System-Level Types

General

sthing actor @—&—@ actor
Boolean /Sca/ar\ \/

Long Complex represent interaction semantics

\ | as types on these ports.
Double

Int

Need a new type lattice representing

NaT subclassing & ad-hoc convertibility.

Type Lattice

Simulation relation =—

Achievable properties:
Strong typing
Polymorphism
Propagation of type constraints
User-defined types

Reflection

o7/

SDF Receiver Type Signature

g/t
hi Input alphabet:

SDF1 ‘ ‘ g: get
p: put
p,v h: hasToken

piv glt Output alphabet:

0: false
1: true
@ t: token
V: void
‘ e: exception
h/0 gle

DE Receiver Type Signature

on h/1 Input alphabet:

ﬁ -t
p: put
. h: hasToken

This automaton simulates the previous one

DE1

Put does not

necessarily O: false
result in 1: true
immediate t: token
availability of v: void

the data. e: exception

o3

System-Level Types
.|

e Declare dynamic properties of component interfaces
e Declare timing properties of component interfaces

Benefits:

e Ensure component compatibility

Clarify interfaces

Provide the vocabulary for design patterns
Detect errors sooner

Promote modularity

Promote polymorphic component design

Our Hope -
Polymorphic Interfaces

actor .\ 7 actor

polymorphic interfaces

o9

More Common Approach -
Interface Synthesis

protocol
adapter

actor ‘\ ‘ /:, actor

rigid, pre-defined interfaces

Ptolemy Il - A Starting Point?

- $

- * Ptolemy 11 -

-~ - Java based, network integrated
- Many domains implemented

- Multi-domain modeling

- XML syntax for persistent data
- Block-diagram GUI

- Extensible type system

- Code generator on the way

http://ptolemy.eecs.berkeley.edu

010

Type System Infrastructure

£ 533 a

=1

3
=

U ol s e T e
L [y Ty Tl LN b T g ey ey

] 5:_::_

COmEnT

2430

O e ma

Ptolemy Il has an
extensible type system
infrastructure with a
plug-in interface for
specifying a type
lattice. At the left, an
applet illustrates type
resolution over a
(simplified) type
lattice representing
data types exchanged
between actors.

Nascent Generator Infrastructure
C]

All actors will be
given in Java, then
translated to
embedded Java, C,
VHDL, etc.

First version created
by Jeff Tsay.

abstract syntax tree

- fire GaussianO
‘ - fire Ramp1l

scheduler

L

Domain semantics defines communication, flow of control

v

Schedule:

- fire Sine2
- fire AddSubtract5
- fire SequenceScopel0

code generator l

for (int i =0; i <plus.getWdth(); i+ {
i1 (plus.hasToken(i)) {
if (sum==null) {
sum = plus. get (i);

sum = sum add(pl us.get(i));
}
}
) target code

oll

Generator Approach
.|

e Actor libraries are built and maintained in Java
- more maintainable, easier to write
- polymorphic libraries are rich and small

e Java + Domain translates to target language
- concurrent and imperative semantics

e Efficiency gotten through code transformations
- specialization of polymorphic types
- code substitution using domain semantics
- removal of excess exception handling

Code transformations (on AST)
L |

/] Original actor source
Token t1 = in.get(0);

Token t2 = in.get(1);
out.send(0, tl.nultiply(t2));

l specialization of Token declarations

/1 Wth specialized types The Ptolemy I1 type system
IntMatrixToken t1 = in.get(0); supports polymorphic actors wnt:
IntMatrixToken t2 = in. get(1): propagating type constraints an

. i static type resolution. The
out.send(0, t1.miltiply(t2)); resolved types can be used in

optimized generated code.

See Jeff Tsay, A Code Generation Framework for Ptolemy 11

ol2

Code transformations (on AST)
.|

Domain-polymorphic code is
replaced with specialized code.
Extended Java (from Titanium
project) treats arrays as
primitive types.

/1l Wth specialized types

Int MatrixToken t1 = in.get(0);
Int MatrixToken t2 = in.get(1);
out.send(0, t1.nultiply(t2));

l transformation using domain semantics

/'l Extended Java with specialized comunication
int[][] t1 = _inbuf[O][_inCOifset = (_i nOf f set +1) %] ;
int[][] t2 = _inbuf[1][_inOffset = (_i nOf fset +1) %3] ;
_outbuf[_outOifset = (_outOffset+1)9%8] =t1 + t2;

See Jeff Tsay, A Code Generation Framework for Ptolemy 11

Code transformations (on AST)
L |

/'l Extended Java with specialized communication
int[][] t1 = _inbuf[0][_inCifset = (_inOffset+1) %] ;
int[][] t2 = _inbuf[1][_inOfset = (_i nOf f set +1) %] ;
_outbuf[_outOffset = (_outOffset+1)%8] =t1 + t2;

l convert extended Java to ordinary Java

/] Specialized, ordinary Java
int[][] t1 = _inbuf[O][_inCifset = (_i nOf f set +1) %] ;
int[][] t2 = _inbuf[1][_inOffset = (_i nOf fset +1) %3] ;
_outbuf[_outOifset = (_outOffset+1)9%8] =

IntegerMatrixMath. mul tiply(tl, t2);

See Jeff Tsay, A Code Generation Framework for Ptolemy 11

el13

Near-Term Goals
e

e Interface definitions for relevant domains
- Those with potential for real-time execution

e Abstraction of real-time properties
- requirements and performance
e Evolution of generator infrastructure
- Demonstrate synthesis of embedded Java
e Explore real-time Java
- Better safety, network integration

Process
Gl

e \Website shared with Phase 11 Berkeley project
- mailing list with archiving
- discussion forums
- CVS archive
e Quasi-weekly meetings
- Comparing software architectures
- Comparing approaches
e Software
- nightly builds
- automated test suite
- design and code reviews
- UML modeling
e Embedded systems lab
- Construction starts in July

eol4d

