
System-Level Design Languages:
Orthogonalizing the Issues

Edward A. Lee
UC Berkeley

The GSRC Semantics Project
Tom Henzinger
Luciano Lavagno
Edward Lee
Alberto Sangiovanni-Vincentelli
Kees Vissers

What is GSRC?

The MARCO/DARPA
Gigascale Silicon
Research Center
– keep the fabs full
– close the productivity gap
– rebuild the RTL foundation
– enable scaleable,

heterogeneous,
component-based design

Participants:
– UC Berkeley
– CMU
– Stanford
– Princeton
– UCLA
– UC Santa Barbara
– UC San Diego
– Purdue
– Michigan
– UC Santa Cruz

http://www.gigascale.org

What is System Level?

A
D

Analog RF

Timing
recovery

JVM

ARQ

UI

Ctr

Fltrs
Ada
pAnt

Eq mud

Accelerators
(bit level)

analog digital DSP core

uC core
(ARM)

Logic

Logic and Memory

Source: Berkeley Wireless Research Center

Embedded SoftwareEmbedded Software

The Future of System-Level
Architecture?

Poor common
infrastructure.
Weak
specialization.
Poor resource
management.
Poor planning.

Elegant Federation

Moving away from obsessive
uniformity towards
elegant federation of
heterogeneous models.

Two Rodeo Drive, Kaplan, McLaughlin, Diaz

S
ou

rc
e:

 K
ap

la
n

M
cL

au
gh

lin
 D

ia
z,

 R
. R

ap
pa

po
rt

, R
oc

kp
or

t,
 1

99
8

Focus on Capabilities,
not Languages

l Modeling
l Simulation
l Visualization
l Synthesis
l Verification
l Modularization

The problem we are here to
address is interoperability
and design productivity.
Not standardization.

Perspectives

facet

perspective

facet

facet

Designers, users, maintainers interact with facets

system

hardware architecture
networking
signal processing
layout
...

function
hardware architecture
modes
power
...timing

software architecture
control logic
logic
...

No single facet
is sufficient

Interactions

system

facet
facet

facet

Consistent?
Modify one facet

Low
resolution

Abstraction
Medium
resolution

High
resolution

Concretization

system

Abstraction

image
facet

facet

facet

facet

system

Shift in
perspective can
reduce the
complexity of a
facet

Choosing Perspectives

Interoperability Levels

l Code can be written to translate the data from one tool
to be used by another.

l Tools can open each other’s files and extract useful
information (not necessarily all useful information).

l Tools can interoperate dynamically, exchanging
information at run time.

Component-Based Design

hierarchy
modularity
reusability

Must Be Able to Specify

l Netlists
l Block diagrams
l Hierarchical state machines
l Object models
l Dataflow graphs
l Process networks

Principle: Orthogonalize Concerns
in SLDLs

l Abstract Syntax
l Concrete Syntax
l Syntactic Transformations
l Type System
l Component Semantics
l Interaction Semantics

Do this first, since
without it, we won’t
get anywhere

Abstract Syntax

hierarchy
connectivity

Not Abstract Syntax

l Semantics of component interactions
l Type system
l File format (a concrete syntax)
l API (another concrete syntax)

An abstract syntax is the
logical structure of a design.
What are the pieces, and how
are they related?

Definitions

Hierarchy

Constraints:
• A port cannot be contained by more than entity.
• A link cannot cross levels of the hierarchy

Connected Components

entity ports relation
l Frame in black
l Hierarchy in blue

Hierarchy and Sharing

this entity has two containers

Meanings
– class
– template
– sharing

Heterarchy

One hierarchy
in blue,
another in
orange.

The GSRC Abstract Syntax

l Models hierarchical connected components
– block diagrams, object models, state machines, …
– abstraction and refinement

l Supports classes and instances
– object models
– inheritance
– static and instance variables

l Supports multiple simultaneous hierarchies
– structure and function
– objects and concurrency

Concrete Syntaxes

l Persistent file formats
l Close to the abstract syntax
l Make it extensible to capture other aspects
l Enable design data exchange

– without customization of the tools

Most language discussions focus on concrete
syntaxes, which are arguably the least important
part of the design

MoML – An XML Concrete Syntax

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC "…" "http://…">
<model name="top" class="path name">

<entity name="source" class="path name">
<port name="output"/>

</entity>
<entity name="sink" class="path name">

<port name="input"/>
</entity>
<relation name="r1" class="path name"/>
<link port="source.output" relation="r1"/>
<link port="sink.input" relation="r1"/>

</model>

MoML DTD
<!ELEMENT model (attribute | class | configure | doc | director | entity | import | link | relation)*>
<!ATTLIST model name CDATA #REQUIRED

class CDATA #REQUIRED>

<!ELEMENT attribute (doc | configure)*>
<!ATTLIST attribute class CDATA #IMPLIED

name CDATA #REQUIRED
value CDATA #IMPLIED>

<!ELEMENT class (attribute | configure | director | doc | entity| link)*>
<!ATTLIST class name CDATA #REQUIRED

extends CDATA #REQUIRED>

<!ELEMENT configure (#PCDATA)>
<!ATTLIST configure source CDATA #IMPLIED>

<!ELEMENT director (attribute | configure)*>
<!ATTLIST director name CDATA "director"

class CDATA #REQUIRED>

<!ELEMENT doc (#PCDATA)>

<!ELEMENT entity (attribute | class | configure | doc | director | entity | rendition | relation)*>

<!ATTLIST entity name CDATA #REQUIRED
class CDATA #REQUIRED>

<!ELEMENT import EMPTY>
<!ATTLIST import source CDATA #REQUIRED>

<!ELEMENT link EMPTY>
<!ATTLIST link port CDATA #REQUIRED

relation CDATA #REQUIRED
vertex CDATA #IMPLIED>

<!ELEMENT location EMPTY>

<!ATTLIST location x CDATA #REQUIRED
y CDATA #IMPLIED
z CDATA #IMPLIED>

<!ELEMENT port (doc | configure)*>
<!ATTLIST port name CDATA #REQUIRED

class CDATA #REQUIRED
direction (input | output | both) "both">

<!ELEMENT relation (vertex*)>
<!ATTLIST relation name CDATA #REQUIRED

class CDATA #REQUIRED>

<!ELEMENT rendition (configure | location)*>
<!ATTLIST rendition class CDATA #REQUIRED>

<!ELEMENT vertex (location?)>
<!ATTLIST vertex name CDATA #REQUIRED

pathToCDATA #IMPLIED>

<!ELEMENT link EMPTY>
<!ATTLIST link port CDATA #REQUIRED

relation CDATA #REQUIRED
vertex CDATA #IMPLIED>

Modeling Markup Language

Since this document type definition
captures only the abstract syntax, it is very
small and simple. Other information is
embedded using distinct XML DTDs.

Syntactic Transformations

l A set of operations on models
– creation of ports, relations, links, and entities
– mutation

l Applications
– visual editors
– higher-order functions
– instantiation
– unrolling recursion

API: Concrete Syntax Supporting
Syntactic Transformations

Entity

+hierarchy() : Hierarchy
+containedEntities() : Set of Entities
+containedPorts() : Set of Ports
+containedRelations() : Set of Relations

Port

+frame() : Frame
+links() : Set of Relations

Relation

+frame() : Frame
+links() : Set of Ports

0..n
0..n

link

link

0..n

0..n 0..n

0..n

Hierarchy

+entities() : Set of Entities
+model() : Model

0..n

1..1

Frame

+links() : Set of Links
+ports() : Set of Ports
+relations() : Set of Relations

Heterarchy

+frame() : Frame
+hierarchies() : Set of Hierarchies

1..1

1..1

0..n

1..1

0..n

1..1

Model

+frame() : Frame
+hierarchy() : Hierarchy

1..1

0..n

0..
n

0..
n

1..n

0..n

1..1

0..n

Link

+frame() : Frame
+port() : Port
+relation() : Relation

0..n

1..1

0..n
0..n

1..1

0..n

1..10..n

Where We Are…

l Abstract Syntax
l Concrete Syntax
l Syntactic Transformations
l Type System
l Component Semantics
l Interaction Semantics

logical structure

meaning

Type Systems

General

String

ScalarBoolean

Complex

Double

Long

Int

NaT

entityentity

need compatible data types

Type lattice represents subclassing & ad-hoc convertibility.

Desirable Properties in a
Type System

l Strong typing
l Polymorphism
l Propagation of type constraints
l Composite types (arrays, records)
l User-defined types
l Reflection
l Higher-order types
l Type inference
l Dependent types

We can have
compatible type systems
without compatible
languages (witness
CORBA)

Component Semantics

Entities are:
l States?
l Processes?
l Threads?
l Differential equations?
l Constraints?
l Objects?

Are Software Component
Models Enough?

Largely missing:
l Time
l Concurrency
l Safety
l Liveness

Are Hardware Component
Models Enough?

Largely missing:
l Abstraction (esp time)
l Inheritance
l Type systems
l Polymorphism
l Portability

process {
…
read();
…

}

One Class of Semantic Models:
Producer / Consumer

process {
…
write();
…

}

channel

port port

receiver

l Are actors active? passive? reactive?
l Are communications timed? synchronized? buffered?

Domains

l CSP – concurrent threads with rendezvous
l CT – continuous-time modeling
l DE – discrete-event systems
l DT – discrete time (cycle driven)
l PN – process networks
l SDF – synchronous dataflow
l SR – synchronous/reactive

Each of these defines a component ontology and an
interaction semantics between components. There are
many more possibilities!

Interfaces

l Represent not just data types, but interaction
types as well.

Int

Double

SDF1

DE1

value conversion behavior conversion

Current Approach –
System-Level Types

General

String

ScalarBoolean

Complex

Double

Long

Int

NaT

actoractor

represent interaction semantics
as types on these ports.

Need a new type lattice representing
subclassing & ad-hoc convertibility.

Type Lattice

NaT

CT1

PN1

SDF1

DE1

CSP1

DP

Simulation relation

Achievable properties:
l Strong typing
l Polymorphism
l Propagation of type constraints
l User-defined types
l Reflection

SDF Receiver Type Signature

has
Token

no
Token

p/v g/t

g/e

h/1g/t

h/0

p/v

SDF1
Input alphabet:

g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception

DE Receiver Type Signature

Input alphabet:
g: get
p: put
h: hasToken

Output alphabet:
0: false
1: true
t: token
v: void
e: exception

has
Token

no
Token

p/v g/t

h/1g/t

p/v

g/eh/0
p/v

DE1

Put does not
necessarily
result in
immediate
availability of
the data.

This automaton simulates the previous oneThis automaton simulates the previous one

System-Level Types

l Declare dynamic properties of component interfaces
l Declare timing properties of component interfaces

Benefits:
l Ensure component compatibility
l Clarify interfaces
l Provide the vocabulary for design patterns
l Detect errors sooner
l Promote modularity
l Promote polymorphic component design

Our Hope –
Polymorphic Interfaces

actoractor

polymorphic interfaces

Alternative Approach –
Interface Synthesis

actoractor

protocol
adapter

rigid, pre-defined interfaces

Where We Are…

l Abstract Syntax
l Concrete Syntax
l Syntactic Transformations
l Type System
l Component Semantics
l Interaction Semantics

Benefits of Orthogonalization

l Modularity in language design
– e.g. can build on existing abstract syntax

l Different levels of tool interoperability
– e.g. visualization tool needs only the abstract syntax

l Terminology independent of concrete syntax
– e.g. design patterns

l Focus on frameworks instead of languages
– dealing with heterogeneity

l Issue-oriented not ASCII-oriented

Ptolemy Project – Sanity Check

Ptolemy II –
– A reference implementation
– Testbed for abstract syntax
– Block diagram MoML editor
– Mutable models
– Extensible type system
– Testbed for system-level types

http://ptolemy.eecs.berkeley.edu

Design in an Abstract Universe

When choosing syntax and
semantics, we can invent
the “laws of physics” that
govern the interaction of
components.

As with any such laws, their
utility depends on our
ability to understand
models governed by the
laws.

Magritte, Gelcondehttp://www.gigascale.org/semantics

