System-Level Design Languages:
Orthogonalizing the Issues

Edward A. Lee
UC Berkeley

What is GSRC?

c52)

The MARCO/DARPA
Gigascale Silicon
Research Center

- keep the fabs full

— close the productivity gap
— rebuild the RTL foundation

—- enable scaleable,
heterogeneous,
component-based design

http://www.gigascale.org

Participants:
- UC Berkeley
- CMU
— Stanford
— Princeton
- UCLA
-~ UC Santa Barbara
- UC San Diego
— Purdue
— Michigan
- UC Santa Cruz

What is System Level?

_ uC core
Logic and Memory (ARM)

bdem Tk

I Logic I Accelerators I

Embedded Software

" i mud
" 1 ERE

Analog RF

analog digital DSP core

FPGA

bdern TH

AG| | AG

tem TK

L

MACIE

E i Mem512
|:| o

™ MemS 12

MemS 120 AG | | AG [Bl MemS 12

=
G

Source: Berkeley Wireless Research Cer

iter

ARM

DataMem

c52)

The Future of System-Level
Architecture?

SIS POOr common
. “"‘H infrastructure.

=see Specialization.

Pl Nee= OO resource
N B > management.
sww o Poor planning.

c52)

Elegant Federation

Moving away from obsessive
uniformity towards

elegant federation of
heterogeneous models.

T

¥
|

Two Rodeo Drive, Kaplan, McLaughlin, Diaz

Source: Kaplan McLaughlin Diaz, R. Rappaport, Rockport, 1998

c52)

Focus on Capabilities,
not Languages

e Modeling

e Simulation

e Visualization
e Synthesis

e Verification

e Modularization

The problem we are here to
address is interoperability
and design productivity.
Not standardization.

Perspectives

Designers, users, maintainers interact with facets

function
hardware architecture

“_

timing
software architecture
control logic hardware architecture
logic networking
signal processing
layout

No single facet
Is sufficient

perspective

Interactions

Consistent?

Abstraction

Low

resolution Concretization

_ Abstraction
Medium

resolution

High
resolution

Choosing Perspectives

Shift in
perspective can
reduce the

complexity of a
facet

c52)

Interoperability Levels
-

e Code can be written to translate the data from one tool
to be used by another.

e Tools can open each other’s files and extract useful
Information (not necessarily all useful information).

e Tools can interoperate dynamically, exchanging
Information at run time.

-
-
-
-
-
-
-
-
="

IIIIIIIIII

Component-Based Design

hierarchy
modularity
reusability

c52)

Must Be Able to Specify
-

e Netlists

Block diagrams

Hierarchical state machines
Object models

Dataflow graphs

Process networks

Abstract Syntax \

Concrete Syntax
Syntactic Transformations

c52)

Principle: Orthogonalize Concerns
in SLDLs

Type System
Component Semantics
Interaction Semantics

Do this first, since
without 1t, we won't
get anywhere

Abstract Syntax

hierarchy

connectivity

-
-
-
-
\\“
-
-
-

IIIIIIIIII

c52)

Not Abstract Syntax

o]
e Semantics of component interactions

e Type system
e File format
o API

An abstract syntax Is the
logical structure of a design.
What are the pieces, and how
are they related?

Definitions

e
A frame f

Ports, a set;
Relations f» a set;
Linksy C Ports¢ X Relations .

A model m

Frame,,,, a frame;
Hierarchy,,, a hierarchy on Frame,, .

c52)

Hierarchy
S

A hierarchy /. on the frame f

Entitiesy,, a set;
ContainedPortsy,: Entitiesy, — P(Portsy);

ContainedRelationsy, . Entitiesp, — P(Relations r);
ContainedEntities,: Entities, — P(Entitiesy);

Constraints:

* A port cannot be contained by more than entity.
A link cannot cross levels of the hierarchy

Connected Components
-

ports relation

entity
e Frame in black

e Hierarchy in blue

Hierarchy and Sharing

Meanings

class
- template

-nt™
=" A
N 4
4
L4
4
L4
4
Y 4
4
&
llllll lv ~~
4 Ot
4 ¢'
Oi
OI
A Y
-

-~y
-y
bl
-~y
-

- -
““““““
-

sharino

this entity has two containers

Heterarchy

One hierarchy
in blue,
another in
orange.

c52)

The GSRC Abstract Syntax
-

e Models hierarchical connected components
- block diagrams, object models, state machines, ...
— abstraction and refinement

e Supports classes and instances
— object models
— Inheritance
- static and instance variables

e Supports multiple simultaneous hierarchies
— structure and function
— objects and concurrency

c52)

Concrete Syntaxes
-

e Persistent file formats
e Close to the abstract syntax
e Make It extensible to capture other aspects

e Enable design data exchange
— without customization of the tools

Most language discussions focus on concrete
syntaxes, which are arguably the least important
part of the design

c52)

MoML — An XML Concrete Syntax
-

<?xm version="1.0" standal one="no"?>
<I DOCTYPE nodel PUBLIC "."" "http://.">
<nodel nane="top" class="path nane">
<entity nane="source" class="path nane">
<port nane="output"/>
</entity>
<entity nane="sink" class="path nane">
<port nanme="Input"/>
</entity>
<relation nane="r1" class="path nanme"/>
<link port="source.output” relation="r1"/>
<link port="sink.input" relation="r1"/>
</ nodel >

MoML DTD

Modeling Markup Language

<IELEMENT link EMPTY>

<IELEMENT model (attribute | class | configure | doc | director | entity | import | link | relation)*>
<IATTLIST model name CDATA #REQUIRED
class CDATA #REQUIRED>

<IELEMENT attribute (doc | configure)*>

<IATTLIST attribute class CDATA #IMPLIED
name CDATA #REQUIRED
value CDATA #IMPLIED>

<IELEMENT class (attribute | configure | director | doc | entity| link)*>
<IATTLIST class name CDATA #REQUIRED
extends CDATA #REQUIRED>

<IELEMENT configure (#PCDATA)>
<IATTLIST configure source CDATA #IMPLIED>

<IELEMENT director (attribute | configure)*>
<IATTLIST director name CDATA "director"
class CDATA #REQUIRED>

<IELEMENT doc (#PCDATA)>
\ELEMENT entity (attribute | class | configure | doc | director | entity | rendition | relation)*>
<IATTI tity name CDATA #REQUIRED

class #REQUIRED>

<IELEMENT import EMPTY>
<IATTLIST import source CDATA #REQUIRED>

<IATTLIST link port CDATA #REQUIRED —

relation CDATA #REQUIRED

<IELEMENT link EMPTY>

<IATTLIST link port CDATA #REQUIRED
relation CDATA #REQUIRED
vertex CDATA #IMPLIED>

vertex CDATA #IMPLIED>

Since this document type definition
captures only the abstract syntax, it is very
small and simple. Other information is
embedded using distinct XML DTDs.

<IELEMENT location EMPTY.2,

<IATTLIST CDATA #REQUIRED
y CDATA #IMPLIED
z CDATA #IMPLIED>

<IELEMENT port (doc | configure)*>
<IATTLIST port name CDATA #REQUIRED
class CDATA #REQUIRED
direction (input | output | both) "both">

<IELEMENT relation (vertex*)>
<IATTLIST relation name CDATA #REQUIRED
class CDATA #REQUIRED>

<IELEMENT rendition (configure | location)*>
<IATTLIST rendition class CDATA #REQUIRED>

<IELEMENT vertex (location?)>
<IATTLIST vertex name CDATA #REQUIRED
pathToCDATA #IMPLIED>

@

Syntactic Transformations

o]
e A set of operations on models
— creation of ports, relations, links, and entities
— mutation
e Applications
— visual editors
- higher-order functions
— Instantiation
— unrolling recursion

c52)

APIl. Concrete Syntax Supporting
Syntactic Transformations

1.1
>
Heterarchy 0..n Frame
0..n Model - -
+frame() : Frame +links() : Set of Links
l.n +hierarchies() : Set of Hierarchies P 1.1 +ports() : Set of Ports
1.1 0..n > +relations() : Set of Relations
) +frame() : Frame
Hierarchy 11 +hierarchy() : Hierarchy 1.1 1.1 1.1
0..n
+entities() : Set of Entities 0..n
+model() : Model
Relation
Port link
1.1 on
0..n
0..n link +frame() : Frame
+frame() : Frame +links() : Set of Ports
0..n 0..n +links() : Set of Relations 0..n
1.1
0..n 1.1 0..n
o _ k> i o
0.. Entity Link
n
0..n
<
+hierarchy() : Hierarchy +frame() : Frame
0.. |+containedEntities() : Set of Entities 0 +port() : Port 0..n
n ./tcontainedPorts() : Set of Ports N -n +relation() : Relation
+containedRelations() : Set of Relations 0..n

Where We Are...

Abstract Syntax ¢
Concrete Syntax o
Syntactic Transformations v
Type System

Component Semantics
Interaction Semantics

logical structure

meaning

Type Systems

General
StLing entity entity
Bool&an/ }alar \/
Long hplex :
need compatible data types
\ Double
Int

NaT Type lattice represents subclassing & ad-hoc convertibility.

c52)

Desirable Properties in a
Type System

o]
e Strong typing

e Polymorphism

e Propagation of type constraints

e Composite types (arrays, records)

e User-defined types

o ReﬂeCthn We can have

e Higher-order types compatible type systems
e Type inference without compatible

. languages (withess

CORBA)

c52)

Component Semantics
-

Entities are:

e States?

e Processes?

e Threads?

e Differential equations?
e Constraints?

e Objects?

Are Software Component

Models Enough?

Largely missing:

Time
Concurrency
Safety
Liveness

E 520

Are Hardware Component
Models Enough?

Largely missing:

e Abstraction (esp time)
e Inheritance

e Type systems

e Polymorphism

e Portabllity

c52)

One Class of Semantic Models:
Producer / Consumer

process { process {

channel
port port

\I/l\}rite(); Il:ead();

}

receiver

e Are actors active? passive? reactive?
e Are communications timed? synchronized? buffered?

c52)

Domains
oo

CSP — concurrent threads with rendezvous
CT — continuous-time modeling

DE — discrete-event systems

DT — discrete time (cycle driven)

PN — process networks

SDF — synchronous dataflow

SR - synchronous/reactive

Each of these defines a component ontology and an
Interaction semantics between components. There are
many more possibilities!

c52)

Interfaces
oo

e Represent not just data types, but interaction
types as well.

behavior conversion

c52)

Current Approach —
System-Level Types

General
StLing actor actor
Boolean /Scamr\ \/
Long Complex represent interaction semantics
| as types on these ports.
Double
/
Int
/ Need a new type lattice representing
NaT

subclassing & ad-hoc convertibility.

Achievable properties:

Type Lattice

Simulation relation

Strong typing
Polymorphism
Propagation of type constraints
User-defined types

Reflection

c52)

SDF Recelver Type Signhature

g/t
h/l Input alphabet:

SDF1 ‘ . g: get
p: put
p,v h: hasToken

Output alphabet:
O: false

1: true
@ t: token

> void
’ ‘ V. VOI

e:. exception

p/v g/t

git h/1 Input alphabet:
g: get

p: put
h: hasToken

DE1

Put does not

necessarily O: false
result in 1. true
immediate t: token
availability of V: void
the data.

e. exception

c52)

System-Level Types
-

e Declare dynamic properties of component interfaces
e Declare timing properties of component interfaces

Benefits:

Ensure component compatibility

Clarify interfaces

Provide the vocabulary for design patterns
Detect errors sooner

Promote modularity

Promote polymorphic component design

c52)

Our Hope —
Polymorphic Interfaces

actor actor

N/

polymorphic interfaces

c52)

Alternative Approach —
Interface Synthesis

protocol
adapter

actor actor

/

rigid, pre-defined interfaces

Where We Are...

Abstract Syntax ¢
Concrete Syntax o
Syntactic Transformations v
Type System v/

Component Semantics ¢
Interaction Semantics y

c52)

Benefits of Orthogonalization
-

e Modularity in language design
— e.g. can build on existing abstract syntax

e Different levels of tool interoperability
— e.g. visualization tool needs only the abstract syntax

e Terminology independent of concrete syntax
- e.g. design patterns

e Focus on frameworks instead of languages
- dealing with heterogeneity

e |Issue-oriented not ASCII-oriented

c52)

Ptolemy Project — Sanity Check

o

- * Ptolemy Il —

- Areference implementation

— Testbed for abstract syntax

- Block diagram MoML editor

— Mutable models

- Extensible type system

- Testbed for system-level types

http://ptolemy.eecs.berkeley.edu

E 520

Design in an Abstract Universe

When choosing syntax and
semantics, we can invent
the “laws of physics” that
govern the interaction of
components.

As with any such laws, their _4#
utility depends on our
ability to understand
models governed by the
laws.

http://www.gigascale.org/semantics Magritte, Gelconde

