Synchronous Reactive Systems

and the
SR Domain

Stephen Edwards

http: // ww. eecs. ber kel ey. edu/ ~ sedwar ds/

University of California, Berkeley

SR Systems I

Zero-delay blocks compute
continuous functions

Instantaneous communication
with feedback

I A

F————
7
Single driver, multiple receiver wires
with values from flat CPOs

e Block functions may change between
instants for time-varying behavior

e Block functions may be specified in any
language

Reactive Embedded Systems I

¢ Run at the speed of their environment

e When as important as what

e Concurrency for controlling the real world
e Determinism desired

¢ Limited resources (e.g., memory)

e Discrete-valued, time-varying

e Examples:

— Systems with user interfaces
+ Digital Watches
+x CD Players

— Real-time controllers

« Anti-lock braking systems
+ Industrial process controllers

The SR Domain I

¢ A new model of computation in Ptolemy

— Good for reactive systems
— Good for describing control
— Synchronous model of time
— Supports heterogeneity: opaque blocks
— Unbuffered multiple-receiver
communication channels
e Deterministic
— Guaranteed by fixed-point semantics

e Fast, predictable execution time

— Chauotic iteration-based execution

— Fully static scheduling

The Synchronous Model of Time I

e Synchronous: time is an ordered sequence of
instants

e Reactive: Instants initiated by environmental
events

System responds to each instant

e NS

1 1 1 T 1 — » Time

T

Nothing happens between instants

¢ A system only needs to be “fast enough” to
simulate synchronous behavior

— e Time

SR Systems I

¢ Reactive systems need concurrency

e The synchronous model makes for
deterministic concurrency

— No “interleaving” semantics
— Events are totally-ordered

— “Before,” “after,” “at the same time” all
well-defined and controllable

¢ Embedded systems need boundedness;
dynamic process creation a problem

e SR system: fixed set of synchronized,
communicating processes

Zero Delay and Feedback I

How to maintain determinism?

Y

A

y

A

Which goes first?
Need an
order-invariant
semantics

Contradictory!
Need to attach
meaning to such
systems.

Fixed-point Semantics are Natural
for Synchronous Specifications
with Feedback

Why a fixed point?

Self-reference:
The essence of a cycle

f(x:/> Sxt
™S

System function Vector of signals
(composition of attimet
block functions) (zero delay)

fixed point «— stable state

determinism < unique solution

Vector of Signals is a CPO I Adding L Is Enough I

Values along an upward path grow more defined. Any set {aj,a,...,an,...} can easily be “lifted” to
give a flat partial order:

A CPO for signals with pure events:

1 0 More Defined
NP4

“Undefined”
element

-
Incomparable
Less Defined
absent present

NS

XXX -
| | .

tor-valued extension :
11 17 o o vector-valued extensi A CPO for valued events

\ // absent v; Vo Vhn
1L t\\J_ /

Why not absent C present?

Formally, xC yif y is at least as defined as x.

present Athen ... else ... end

Violates monotonicity

Monotonic Block Functions I

Giving a more defined input to a monotonic
function always gives a more defined output.

Formally, xC y implies f(x) C f(y).

A monotonic function never recants (“changes its
mind”).

Many Languages Use Strict
Functions, Which Are Monotonic

A strict function:

Inputs outputs
Outside: Inside:
A strict Simple
monotonic —*™ ™ = — “function call”
function semantics

Most common imperative languages only
compute strict functions.

Danger: Cycles of strict functions
deadlock—fixed point is all 1. —need some
non-strict functions.

A Simple Way to Find the Least Asymptotic Schedule Cost I
Fixed Point

n2 nl5
LCf(L)Cf(f(L)C---CLFP=LFP =" 1000 3
For each instant,
. . Ay,
1. Start with all signals at | - L 2 '
- S 100 - Sas\ N
2. Evaluate all blocks (in some order) e RN :,
- ° ® .
3. If any change their outputs, repeat Step 2 S ;'3'«: A

S o 3

fo a L b f2 c % 3.3'3.“

0 KX

% {>C {>C g 10 = ...
o -
O - .

(abc) = (L,L,1)
fo(L,L1,1) = (0,L,1)
fl(ovj—vj—) = (Ovlvj—) 1 S ——rrr
f2(0,1,1) = (0,1,0) 1 10 100
fo(f1(f0(0,1,0))) = (0,1,0) Number of Outputs

