
Synchronous Reactive Systems
and the

SR Domain

Stephen Edwards

http://www.eecs.berkeley.edu/˜sedwards/

University of California, Berkeley

SR Systems

Zero-delay blocks compute
continuous functions

Instantaneous communication
with feedback

Single driver, multiple receiver wires
with values from flat CPOs

� Block functions may change between
instants for time-varying behavior

� Block functions may be specified in any
language

1

Reactive Embedded Systems

� Run at the speed of their environment

� When as important as what

� Concurrency for controlling the real world

� Determinism desired

� Limited resources (e.g., memory)

� Discrete-valued, time-varying

� Examples:

– Systems with user interfaces

� Digital Watches

� CD Players

– Real-time controllers

� Anti-lock braking systems

� Industrial process controllers

The SR Domain

� A new model of computation in Ptolemy

– Good for reactive systems

– Good for describing control

– Synchronous model of time

– Supports heterogeneity: opaque blocks

– Unbuffered multiple-receiver
communication channels

� Deterministic

– Guaranteed by fixed-point semantics

� Fast, predictable execution time

– Chaotic iteration-based execution

– Fully static scheduling

2

The Synchronous Model of Time

� Synchronous: time is an ordered sequence of
instants

� Reactive: Instants initiated by environmental
events

Time

System responds to each instant

Nothing happens between instants

� A system only needs to be “fast enough” to
simulate synchronous behavior

Time

SR Systems

� Reactive systems need concurrency

� The synchronous model makes for
deterministic concurrency

– No “interleaving” semantics

– Events are totally-ordered

– “Before,” “after,” “at the same time” all
well-defined and controllable

� Embedded systems need boundedness;
dynamic process creation a problem

� SR system: fixed set of synchronized,
communicating processes

3

Zero Delay and Feedback

How to maintain determinism?

A B

Which goes first?
Need an
order-invariant
semantics

Contradictory!
Need to attach
meaning to such
systems.

Fixed-point Semantics are Natural
for Synchronous Specifications
with Feedback

Why a fixed point?

Self-reference:
The essence of a cycle

f (xt) = xt

System function Vector of signals

(composition of at time t

block functions) (zero delay)

fixed point () stable state

determinism () unique solution

4

Vector of Signals is a CPO

Values along an upward path grow more defined.

?

1 0

“Undefined”
element

More Defined

Less Defined

Incomparable

11 01 10 00

?1 1? 0? ?0

??

vector-valued extension

Formally, x v y if y is at least as defined as x.

Adding ? Is Enough

Any set fa1;a2; : : :;an; : : :g can easily be “lifted” to
give a flat partial order:

a1 a2 a3 � � � an � � �

?

A CPO for signals with pure events:

?

absent present

A CPO for valued events:

absent v1 v2 � � � vn � � �

?

Why not absentv present?

present A then ... else ... end

Violates monotonicity

5

Monotonic Block Functions

Giving a more defined input to a monotonic
function always gives a more defined output.

?

f (?)

f (f (?))

f (f (f (?)))

f (f (f (f (?))))

Formally, x v y implies f (x) v f (y).

A monotonic function never recants (“changes its
mind”).

Many Languages Use Strict
Functions, Which Are Monotonic

A strict function:

g(: : : ;?; : : :

| {z }

inputs

) = (?; : : :;?

| {z }

outputs

)

Outside:
A strict
monotonic
function

Inside:
Simple
“function call”
semantics

Most common imperative languages only
compute strict functions.

Danger: Cycles of strict functions
deadlock—fixed point is all ?—need some
non-strict functions.

6

A Simple Way to Find the Least
Fixed Point

?v f (?) v f (f (?)) v �� � v LFP = LFP = � � �

For each instant,

1. Start with all signals at ?

2. Evaluate all blocks (in some order)

3. If any change their outputs, repeat Step 2

f0 a
f1 b

f2 c

(a;b;c) = (?;?;?)

f0(?;?;?) = (0;?;?)

f1(0;?;?) = (0;1;?)

f2(0;1;?) = (0;1;0)

f2(f1(f0(0;1;0))) = (0;1;0)

Asymptotic Schedule Cost

1

10

100

1000

1 10 100

n

n1:5n2

Number of Outputs

O
pt

im
al

S
ch

ed
ul

e
C

os
t

7

