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Types of Computational Systems

Transformational

•  transform a body of input data into a body of output data

Interactive

•  interact with the environment at their own speed

Reactive

•  react continuously at the speed of the environment

This project focuses on the design of reactive systems

•  real-time

•  embedded

•  concurrent

•  distributed

•  adaptive
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Background

Ptolemy
Research

•  Visual, system-level
heterogeneous design.

•  Animated interactive
and real-time
simulation.

•  Formal methods for
dataflow and discrete-
event systems

•  Programming language
semantics.

•  Software and hardware
synthesis.

•  Parallel architectures,
partitioning, and
scheduling.

This highly multidisciplinary project has been addressing system-level design and
implementation of reactive real-time systems, with emphasis on embedded systems

since 1990. It provides the infrastructure on which we will build.
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System-Level Heterogeneous Design

Hardware/
Software
Codesign

•  Synthesis of
embedded software
simulated on an
instruction set model
of the processor.

•  Cosimulation with
VHDL simulators.

•  Synthesis of
synthesizable and
simulatable VHDL
from dataflow.

•  Partitioning and
scheduling.

The class of systems addressed in the Ptolemy project under RASSP was
embedded systems with one or more programmable processor.
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An Early Co-Simulation Environment

Demonstrated
•  Instruction set model

of the processor.
•  RTL model of chip

input/output.
•  High-level software

development.
•  Co-simulation with

VHDL simulators.
•  Co-simulation with

functional ASIC
models.

•  Co-synthesis using
Hyper and
architectural
synthesis.

The image above shows an early (1992) Ptolemy simulation of a multiprocessor
system where the software is synthesized (including partitioning) from a block

diagram and hardware is simulated at the RTL level.
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Choosing Models of Computation

Validation methods

•  By construction
•  property is inherent.

•  By verification
•  property is provable syntactically.

•  By simulation
•  check behavior for all inputs.

•  By testing
•  observation of a prototype.

•  By intuition
•  property is true, I think.

•  By assertion
•  property is true. That’s an order.

It is generally better to be higher in this list

Meret Oppenheim, Object , 1936
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Usefulness of a Model of Computation

•  Expressiveness

•  Generality

•  Simplicity

•  Compilability/Synthesizability

•  Verifiability

The Conclusion

One way to get all of these is to mix diverse, simple models of
computation, while keeping compilation, synthesis, and verifi-
cation separate for each MoC. To do that, we need to under-
stand these MoCs relative to one another, and understand
their interaction when combined in a single system design.
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A Mixed Design Flow
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Visual Design

•  Formal properties.

•  Scalability.

•  Scheduling.

•  Partitioning.
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Our Contributions to Dataflow Modeling

•  Compile-time scheduling ofsynchronous dataflow graphs
with optimized partitioning and memory utilization.

•  Specification of theBoolean dataflow (BDF) model, which is
Turing complete.

•  Proof that the existence of a finite complete cycle and a
bounded memory implementation for BDF isundecidable.

• Heuristics for constructing finite complete cycles and
bounded memory schedules most of the time.

• Multidimensional generalization to dataflow models.

• Process network model generalization to dataflow.

• Visual programming formulation and use ofhigher-order
functions.
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Interactive, High-Level Simulation and Specification

Author: Uwe
Trautwein,
Technical
University of
Ilmenau,
Germany



UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p.  13 of  15i lp_overview.doc

Ptolemy as a Tool and as a Laboratory

Ptolemy is

•  Extensible

•  Publicly available

•  An open architecture

•  Object-oriented

Allows for experiments with:

•  Models of computation

•  Domain-specific tools

•  Design methodology

•  Software synthesis

•  Hardware synthesis

•  Cosimulation

Rationale for heterogeneity: specialized models are

•  More useful to the system-level designer

•  More amenable to hardware and software synthesis

•  More amenable to formal methods
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Extensive Documentation

Volume 1
User’s Manual

pigi
ptcl

domains
vem

pxgraph
installation

The Almagest

Volume 3
Kernel Manual

detailed documentation
of all C++ classes

defined in the kernel.
Essential for defining
Targets and Domains.

Volume 2
Programmer’s Manual
software organization

writing stars
infrastructure

data types
Tcl/Tk

domains
code generation
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Further Information

•  Software distribution
•  Small demonstration version
•  Project overview
• The Almagest (the manual)
•  Current projects summary
•  Project publications
•  Keyword searching
•  Project participants
•  Sponsors
•  Copy of the FAQ
•  Newsgroup info
•  Mailing lists info

http://ptolemy.eecs.berkeley.edu


