
UNIVERSITY OF CALIFORNIA AT BERKELEY

i lp_overview.doc
Copyright © 1997, The Regents of the University of California
All rights reserved.

An Overview of the Ptolemy Project

Edward A. Lee
Professor and
Principal Investigator

UC Berkeley
Dept. of EECS

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 2 of 15i lp_overview.doc

Organizational

Staff
Diane Chang, administrative assistant

Kevin Chang, programmer
Christopher Hylands, programmer analyst

Edward A. Lee, professor and PI
Mary Stewart, programmer analyst

Postdocs
Praveen Murthy
Seehyun Kim

Raja Nagarajan
John Reekie

Dick Stevens (on leave from NRL)

Students
Sunil Bhave

Cliff Cordeiro
John Davis

Stephen Edwards
Ron Galicia
Mudit Goel

Michael Goodwin
Luis Gutierrez

Bilung Lee

Michael C. Williamson
Yuhong Xiong

Key Outside Collaborators
Shuvra Bhattacharyya (Hitachi)

Joseph T. Buck (Synopsys)
Brian L. Evans (UT Austin)
Soonhoi Ha (Seoul N. Univ.)

Tom Lane (SSS)
Thomas M. Parks (Lincoln Labs)
José Luis Pino (Hewlett Packard)

Cooperating Industrial Sponsors
The Alta Group of Cadence

Dolby Laboratories
Hitachi

Lucky/Goldstar
Lockheed Martin ATL

Mitsubishi
Motorola

NEC
Philips

Rockwell
Semiconductor Research Corporation

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 3 of 15i lp_overview.doc

Types of Computational Systems

Transformational

• transform a body of input data into a body of output data

Interactive

• interact with the environment at their own speed

Reactive

• react continuously at the speed of the environment

This project focuses on the design of reactive systems

• real-time

• embedded

• concurrent

• distributed

• adaptive

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 4 of 15i lp_overview.doc

Background

Ptolemy
Research

• Visual, system-level
heterogeneous design.

• Animated interactive
and real-time
simulation.

• Formal methods for
dataflow and discrete-
event systems

• Programming language
semantics.

• Software and hardware
synthesis.

• Parallel architectures,
partitioning, and
scheduling.

This highly multidisciplinary project has been addressing system-level design and
implementation of reactive real-time systems, with emphasis on embedded systems

since 1990. It provides the infrastructure on which we will build.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 5 of 15i lp_overview.doc

System-Level Heterogeneous Design

Hardware/
Software
Codesign

• Synthesis of
embedded software
simulated on an
instruction set model
of the processor.

• Cosimulation with
VHDL simulators.

• Synthesis of
synthesizable and
simulatable VHDL
from dataflow.

• Partitioning and
scheduling.

The class of systems addressed in the Ptolemy project under RASSP was
embedded systems with one or more programmable processor.

control panel

ASIC microcontroller

real-time
operating
system

controller
process

user int.
process

system bus

DSP
assembly

code
programmable

DSP

host port

memory int.

programmable
DSP

host port

memory int.

dual-ported memory

CODEC

DSP
assembly

code

analog
interface

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 6 of 15i lp_overview.doc

An Early Co-Simulation Environment

Demonstrated
• Instruction set model

of the processor.
• RTL model of chip

input/output.
• High-level software

development.
• Co-simulation with

VHDL simulators.
• Co-simulation with

functional ASIC
models.

• Co-synthesis using
Hyper and
architectural
synthesis.

The image above shows an early (1992) Ptolemy simulation of a multiprocessor
system where the software is synthesized (including partitioning) from a block

diagram and hardware is simulated at the RTL level.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 7 of 15i lp_overview.doc

Choosing Models of Computation

Validation methods

• By construction
• property is inherent.

• By verification
• property is provable syntactically.

• By simulation
• check behavior for all inputs.

• By testing
• observation of a prototype.

• By intuition
• property is true, I think.

• By assertion
• property is true. That’s an order.

It is generally better to be higher in this list

Meret Oppenheim, Object , 1936

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 8 of 15i lp_overview.doc

Usefulness of a Model of Computation

• Expressiveness

• Generality

• Simplicity

• Compilability/Synthesizability

• Verifiability

The Conclusion

One way to get all of these is to mix diverse, simple models of
computation, while keeping compilation, synthesis, and verifi-
cation separate for each MoC. To do that, we need to under-
stand these MoCs relative to one another, and understand
their interaction when combined in a single system design.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 9 of 15i lp_overview.doc

A Mixed Design Flow

FSMs
discrete
event

cosimulation

logic
model

cosimulation

execution
model

system-level modeling

synthesis

detail modeling and simulation

ASIC
model

execution
model

ASIC
synthesis

software
synthesis

partitioning

compiler
logic

synthesis

symbolic

imperative dataflow

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 10 of 15i lp_overview.doc

Visual Design

• Formal properties.

• Scalability.

• Scheduling.

• Partitioning.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 11 of 15i lp_overview.doc

Our Contributions to Dataflow Modeling

• Compile-time scheduling ofsynchronous dataflow graphs
with optimized partitioning and memory utilization.

• Specification of theBoolean dataflow (BDF) model, which is
Turing complete.

• Proof that the existence of a finite complete cycle and a
bounded memory implementation for BDF isundecidable.

• Heuristics for constructing finite complete cycles and
bounded memory schedules most of the time.

• Multidimensional generalization to dataflow models.

• Process network model generalization to dataflow.

• Visual programming formulation and use ofhigher-order
functions.

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 12 of 15i lp_overview.doc

Interactive, High-Level Simulation and Specification

Author: Uwe
Trautwein,
Technical
University of
Ilmenau,
Germany

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 13 of 15i lp_overview.doc

Ptolemy as a Tool and as a Laboratory

Ptolemy is

• Extensible

• Publicly available

• An open architecture

• Object-oriented

Allows for experiments with:

• Models of computation

• Domain-specific tools

• Design methodology

• Software synthesis

• Hardware synthesis

• Cosimulation

Rationale for heterogeneity: specialized models are

• More useful to the system-level designer

• More amenable to hardware and software synthesis

• More amenable to formal methods

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 14 of 15i lp_overview.doc

Extensive Documentation

Volume 1
User’s Manual

pigi
ptcl

domains
vem

pxgraph
installation

The Almagest

Volume 3
Kernel Manual

detailed documentation
of all C++ classes

defined in the kernel.
Essential for defining
Targets and Domains.

Volume 2
Programmer’s Manual
software organization

writing stars
infrastructure

data types
Tcl/Tk

domains
code generation

UNIVERSITY OF CALIFORNIA AT BERKELEY

 © 1997, p. 15 of 15i lp_overview.doc

Further Information

• Software distribution
• Small demonstration version
• Project overview
• The Almagest (the manual)
• Current projects summary
• Project publications
• Keyword searching
• Project participants
• Sponsors
• Copy of the FAQ
• Newsgroup info
• Mailing lists info

http://ptolemy.eecs.berkeley.edu

