
Web-Based Simulators of 
Embedded Software for Programmable Digital

Signal Processors
Prof. Brian L. Evans 

Department of Electrical and Computer Engineering
The University of Texas at Austin, Austin, Texas 

bevans@ece.utexas.edu

Research conducted in collaboration with 

Raza Ahmed, Luis Gutierrez, and Dr. José Luis Pino at UC Berkeley
Dogu Arifler and Chris Moy at UT Austin

Keith Larson at Texas Instruments 

Presented at the Ptolemy Miniconference
University of California at Berkeley, March 14, 1997. 

 

Outline
Web-Based System-Level Design Tools
Synthesis of Efficient Implementations

Embedded Systems
Programmable Digital Signal Processors (DSPs)

Goals for Standalone DSP Simulators
Impact on DSP Simulators

The C30 Simulator
Impact on Ptolemy

Web-Based Design Tools
Web-Based Configurable Simulators

Conclusion 

 

Web-Based System-Level Design Tools
System-Level Design 

Management of complexity and heterogeneity 



Simulation 
Synthesis 

The Web as an Electronic Design Automation Tool 

Distributed design tools 
Object-oriented design 
Desktop access to the latest tools [WELD] 

 

Synthesis of Efficient Implementations
Implementation Cost Metrics 

Software costs such as data size, program size, throughput, and power consumption 
Hardware costs such as area, weight, throughput, and power consumption 

Use of Cost Metrics in Design Space Exploration 

Multiprocessor scheduling [Ptolemy Project Papers] [Architecture Trade Tool] 
Hardware/software codesign [Kalavade and Lee] [POLIS] 
Low-power design [Survey] [Hyper] [Concept] [Pleiades] 
Benchmarking [Berkeley Design Technology] 

 

Embedded Systems
Hidden from the User 

Products with Embedded Systems 

Audio CD players and music synthesizers 
Disk drives 
Digital cellular phones 
Sonar and radar 
Video disk players and video telephones 

Perform Signal Processing, Communications, and Control 

Embedded Software Systems [Graduate Course] 

 



Programmable Digital Signal Processors (DSPs)
Common Properties [Talk on DSP Hardware] 

Fall between microcontrollers and the fastest general-purpose processors in terms of processing
power and power consumption 
One cycle execution for most instructions 
Zero-overhead looping 
Hardware multiplier(s) 
Extended precision accumulator 
Separate data and program memory on separate busses 
Special addressing modes 
Various data formats: 

fixed-point such as the TMS320C50 and Motorola 56000 families (comparison) 
non-IEEE floating-point such as the TMS320C30 family 
IEEE floating-point such as the ADSP-21020 

Pipelines with hardware interlocking protection 
Compiler tools are generally not very efficient 

 

Goals for Standalone DSP Simulators
Support System-Level Design Tools 

Leverage existing simulators or disassemblers 
Validate them to be cycle-accurate and bit-true 
Extend them to support different boards and hypothetical configurations 
Return implementation cost estimates 
Make portable across computer platforms 
Report pipeline hazards 

Support for Control by a Parent Process 

Separate the user interface from the kernel 
Add hooks to configure the parent process(es) that controls it 
Support pipes by flushing all output 

 

Impact on DSP Simulators
Plans for DSP Simulator Development 



Tools Available by FTP Simulator Available? Current Work at UT Future Work at UT 

C30 DSK Tools (1) [Texas
Instruments] No C30 Simulator (2) C30 Simulator (3) 

C20 DSK Tools [Texas
Instruments] No - C50 Simulator (2)(3) 

56000 Tools [Motorola] Yes - 56000 Simulator
(2)(3) 

1. DSK stands for Digital Signal Processing Starter Kit 
2. Will return program, data, and execution time 
3. Will return estimates of power consumption 

 

The C30 Simulator
Validation 

Based on the validated disassembler for the C30 DSK board 
Written in C++ that has been run through Purify 
Run simulator in lock step with the C30 DSK board to verify state 

Interaction 

Can be controlled by a parent process 
User can use textual commands 

Portability 

Runs under MS-DOS, Windows, and Unix 

Features: 

Instruction set architecture simulation 
Supports the C30 non-IEEE floating-point format 
Models state of the C30 processor including the pipeline 

Speed 

Simulates about 80,000 C30 instructions/sec on a 167 MHz UltraSparc 
Reasonable for interpreted simulation 

Impact 

First freely distributable C30 simulator 
Changes to the underlying C30 DSK tools have been rolled into C30 DSK tool releases 



 

Impact on Ptolemy
Plans for Incorporating Feedback from Simulators 

Ptolemy pre-0.7 New in Ptolemy 0.7 Planned for Ptolemy 0.7+ Teamed with 

Code Generation (CG)
Targets 

CG Target Tracks Costs - RA, JLP 

CG 56000 (CG56) Domain 
CG56 Target Tracks

Cost 

C50 Domain 
C50 Target Tracks Cost 

RA, JLP 

LG 

CG in C (CGC) Domain - 
CGC/C30 Target 

CGC/C30 Target Tracks
Cost 

? 

New CG Target Parameters 

Show memory usage? 
Show run time? 

Benchmarking of Dual-Tone Modulated-Frequency Decoders [Paper] 

 

Web-Based Design Tools
Web-Based Electronic Design [WELD] 

Finite State Machine Editor 
Schematic Editor for the Synopsys Design Compiler 
Real-Time Package for Java 

Tech On-Line DSP Debuggers 

Sluggish telnet access to two C30 boards and two C50 boards 
For demonstration purposes 
No clean way to transfer files 

 

Web-Based Configurable Simulators



Client-Server Architecture 

Java Applets implement the graphical user interface 
Server is written in Java 
Applets communicate with the server over a socket 
Server manages the command-line simulators 
The Applets configure the menus and display based on information returned by the simulator 

Web-Enhanced Texas Instruments C30 Simulator (WETICS) 

Tested on Unix platforms and Windows ’95 
Should run on all platforms that support Java 
Release expected in April of 1997 
Preliminary proof-of-concept demonstration installed at UT Austin 

 

Conclusion
Simulators 

Provide measures of implementation costs 
Cooperate with system-level design tools and graphical user interfaces 

Ptolemy Targets Track Implementation Costs 

Ptolemy 0.7 will track software implementation costs for the 56000 
Profiling performance of blocks of C code in systems [Pino] 
Hooks exists for tracking hardware implementation costs 

Web-Enhanced, Configurable Users Interfaces 

Simulators 
Debuggers 

 

Last Updated 03/23/97. 


