
UNIVERSITY OF CALIFORNIA AT BERKELEY

Java, Threads, and Ptolemy

A New Direction for Ptolemy

Ptolemy Miniconference

14 March 1997

Dick Stevens

Naval Research Laboratory

Washington, DC

stevens@ait.nrl.navy.mil

dstevens@eecs.berkeley.edu

UNIVERSITY OF CALIFORNIA AT BERKELEY

Why Java?

• Because Java is
• Portable

• Distributable (Applets)

• Cleaner than C++

• Threaded

• Buzzword Compliant

• Itcl complements Java
• Java is low-level

• Itcl is high-level & scripted

UNIVERSITY OF CALIFORNIA AT BERKELEY

Building on the Ptolemy Experience

• Separate Domains (current)
• Strict Information Hiding

• Hierarchical Nesting of Models of Computation

• Simulation vs Code Generation

• Integrated Domains (future)
• More seamless Programming Model

• More seamless User Interface

• Potential for Better Synthesis

• Modularized Programming Environment

• Deployable, Modular Design Tools

UNIVERSITY OF CALIFORNIA AT BERKELEY

Integrated Domains

• We have learned a lot
• Domains have helped

• We can exploit what we have learned

• Models of Computation
• Kahn Process Network (PN)

• Dynamic Data Flow (DDF)

• Boolean Data Flow (BDF)

• Synchronous Data Flow (SDF)

• Finite State Machine (FSM)

Increasing
specialization:
More efficient
execution

Control

UNIVERSITY OF CALIFORNIA AT BERKELEY

Models of Compuation to be Integrated

SDF
BDF

DDF
PN

• PN: Sequential processes
• communication via FIFO channels

• blocking read when channel is empty

• DDF: Run time firing of actors, mutable graph

• BDF: Compile time analysis => firing sequence

• SDF: Periodic firing sequence

UNIVERSITY OF CALIFORNIA AT BERKELEY

Implementing PN in Java

Icon Object Implementation

Circle Process Thread

Connecting
Line

FIFO Channel
- Unbounded
- Blocking Read

List
- Expandable
- Wait & Notify

PN vs Java Threads
• Threads are low-level & non-determinate

• PN is high-level & determinate

• Use Java Threads to implement higher level concurrence model

UNIVERSITY OF CALIFORNIA AT BERKELEY

Prototype PN in Java

• Participants
• Peggy Laramie

• Marlene Wan

• Dick Stevens

• Define Processes

• Connect Processes

• Run

Student Project for EE290N, Fall ‘96

UNIVERSITY OF CALIFORNIA AT BERKELEY

Technical Issues

• Will a PN eventually halt?
• In SDF - Decidable in finite time

• In general - Undecidable

• If not, will it execute in bounded memory?
• In SDF - Decidable

• In general- Undecidable

• Tom Parks: Execute in bounded memory if possible

UNIVERSITY OF CALIFORNIA AT BERKELEY

Executing a PN in Bounded Memory

Tom Parks’ Algorithm

• Set a capacity on each channel

• Block write when channel is full

• Repeat
• Run until deadlock occurs

• If never deadlocks, then problem solved

• If deadlock and no blocking writes, then PN halts

• Among channels that block writes,
select one with lowest capacity

• Increase capacity of selected channel

• Infinite time to decide
• Whether PN halts

• Whether PN executes forever in bounded memory

UNIVERSITY OF CALIFORNIA AT BERKELEY

Applet to Generate Primes

• Sieve of Eratosthenes

• Mutable Graph
• Processes to generate 2, 3, 4, ...

• Process to filter multiples of 2

• Dynamically add process for each
new prime

• Run from within Tycho
using the Tcl/Java interface

UNIVERSITY OF CALIFORNIA AT BERKELEY

Status

• Project: Prototype demonstration
• Process Networks: Blocking Reads

• Implemented in Java

• Execute in Bounded Memory when possible

• Tycho/Java Environment
• Applet to generate primes

• Currently Building Java Kernel

UNIVERSITY OF CALIFORNIA AT BERKELEY

Summary

• Java implementation for Ptolemy
• Portable, Distributable, Multi-Threaded

• Build on past experience

• Use same Itcl interface

• Merge simulation, code generation

• Merge hierarchical models of computation

• Approach
• Generic Kernel to support multiple domains

• Start with PN domain, PN model

• Add more specialized models DDF, BDF, SDF

• Add other models DE, VHDL, SR, ...

