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— Introduction —

Role of Symbolic Computation
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— System Simulation —

Symbolic Parameter Calculation

Truncated Fourier Series Computation
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Fixed Fourier Coefficient Formula

Approximate a Square Wave by a
Finite Number of Sinusoids

parameter_map:
gain = 4/(P]*(2*instance_number-1))
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parameter_map:
frequency = 2*PI*(2*instance_number-1)/period

Compute Fourier Coefficient Formula From xz(t)



— System Simulation —

Numeric Parameter Optimization

Optimization of an Existing Filter Design
e Deviation from an ideal magnitude response
e Linear phase response in the passband
e Quality factors of second-order sections

e Peak overshoot in the step response

The Optimization Problem
e Scquential Quadratic Programming
e Differentiable objective functions

e Filter specifications to differentiable constraints



— System Simulation —

Numeric Parameter Optimization

Code generation

e Define the objective function and constraints
e Compute gradients of both symbolically
e Generate source code (C, Fortran, or Matlab)

e Generate main program (Matlab)



— System Simulation —

Numeric Parameter Optimization

Example: Fourth-Order All-Pole Filter

e Specifications:
at w, = 20 rad/sec, §, = 0.21
at w, = 30 rad/sec, 6, = 0.31

e [nitial filter 1s Butterworth

e Pole locations
initial: —8&.415 4+ 20.315 —20.315 4 8.415
final: —7.792 4+ 22.898 —19.562 4 0.626

e Objective function

reduced from 1.17 to 4.7 x 1077

e Final gradients of objective function

3.1 x107°, 4.2 x 107, —2.3 x 107°, and —5.5 x 1076



— System Simulation —

Numeric Parameter Optimization

Example: Fourth-Order All-Pole Filter

Phase Response
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- - - dashed lines represent the initial Butterworth filter

— solid lines represent the filter optimized for linear phase
response in the passband and for overshoot of the step response



— System Simulation —

Numeric Parameter Optimization

Example: Fourth-Order All-Pole Filter

St ep Response
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- - - dashed lines represent the initial Butterworth filter

— solid lines represent the filter optimized for linear phase
response in the passband and for overshoot of the step response



— System Simulation —

Numeric Parameter Optimization

Example: Fourth-Order All-Pole Filter

Magni t ude Response (dB)
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- - - dashed lines represent the initial Butterworth filter

— solid lines represent the filter optimized for linear phase
response in the passband and for overshoot of the step response



— System Design —

Non-Uniform Filter Bank
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Flow graph of a two-channel non-uniform filter bank

upperchannel =
Downsample [2,n] [
Convolve[n] [
g0[nl,
Upsample[3,n] [
Downsample[3,n] [
Convolve[n] [hO[n],
Upsample[2,n] [x[n]]1]11]1]1]
lowerchannel =
Convolve[n][
gllnl,
Upsample[3,n] [
Downsample[3,n][ Convolve[n][hi[n], x[n]]]1]1]

Algebraic description of the filter bank
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— System Design —

Non-Uniform Filter Bank
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(z) = %(Go(—ﬁ)Ho(—\/E) + Go(\/E)Ho(ﬁ) - zal(z)Hl(z)) X(z)gr
(Gol=V2) Hol(ei™V/2) + Go(V2) Ho(e 7 V/Z) 4 261 () H(e¥72) ) X(e572) +
(Go(VZ) Ho(eF7/Z) + Go(—V/2) Hy(e¥7y/Z) + 261 (2) Hy(e¥72) ) X (eF72)
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Symbolic analysis of input-output relationship

hO[n] = FIR[n, Hold[ReadList["ptolemy/h0", Number]]l];
hi[n] = FIR[n, Hold[ReadList["ptolemy/h1", Number]]l];
g0[n] = FIR[n, Hold[ReadList["ptolemy/g0", Number]]];
gl[n] = FIR[n, Hold[ReadList["ptolemy/gl", Number]]];

x[n] = Cos[2 Pi n / 3] Sinc[Pi n / 6] / 3;

PtolemySimulation[ upperchannel + lowerchannel,
{n, 1, 100} 1 >> "lptcl"

Transformation of algebraic description to Ptcl
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— System Design —

Evaluating Alternate
Implementations

Rearrangement Rules
e Rules based on interaction between operators

e Based on properties of signals and systems

Cost Functions
e Based on implementation costs

e Require feedback from synthesis tools

Heuristic Searches

e Scarch through space of alternate implementations
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— System Design —

Multidimensional Signal Processing

Multidimensional Signals Defined On Grid of Points

Multidimensional Periodic Signals

z[n] = z[n + Nr]

General Multidimensional DFT

X[k] = ¥ anle 27k Nin

n

Smith Form Decompositions

N=UAV — N'!'=viaA'tu'!

X[k] = Y xnle’?" (KBt A=t (U n)
X[k] = Ya[Unle 2k A™a
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— System Design —

Multidimensional Rearrangement

Rules
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Cascade in Smith Form
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Combining operations

Four Equivalent Forms of a
Downsampler and Upsampler in Cascade
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— System Design —

Multidimensional Rearrangement

Rules

O—TS * ZHO * lS—o Dt O

Up/downsampling by S when the shift vector
ng & sublattice(S); i.e., S7'ng is not an integer vector
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Up/downsampling by S when the shift vector
n, € sublattice(S); i.e., S7tng is an integer vector

O—TL * ZHO * lM—o@
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For any L and M, ny can be rewritten as ng = Ln; + Mny,

Interaction between Upsamplers,
Shifters, and Downsamplers in Cascade
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Conclusion

System Simulation

e Symbolic parameter calculation

e Numeric parameter optimization

System Design

e Symbolic analysis and transformation

e Evaluating alternative implementations

Future Work

o Allow parameters to calculated symbolically
e Explore optimization of other behavioral models

e Encode Synchronous Dataflow (SDF) system rewriting in the
Design Methodology Management (DMM) Domain

e Implement Multidimensional SDF system rewriting in DMM Do-
main, esp. non-separable resampling operations
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