
Eighth Biennial Ptolemy Miniconference
Tutorial

UC Berkeley, April 15, 2009

For wireless access, get a username and password from Christopher. Then
use your wireless network chooser to find the airbears network, then point
your web browser at any web page, such as http://ptolemy.org. You will
be prompted for a username and password.

10:00 - 12:00 Setup
12:00 - 1:00 Lunch (Provided)
1:00 - 2:30 Writing Actors (Isaac Liu and Ben Lickly)
2:30 - 2:40 Break
2:45 - 3:30 Directors (Stavros Tripakis)
3:30 - 4:15 Codegen Hello World with legacy C - EmbeddedCActor (Man-Kit

(Jackie) Leung)
4:15 - 5:00 Model Transformation (Thomas Feng)

1

Setting up Ptolemy II and Eclipse

These instructions assume you are using Eclipse Ganymede SR2 (based on 3.4.1) under

Windows or Mac OS X. Other ways of setting up and building Ptolemy II are described on the

Ptolemy II install page.

Contents of this page:

Install Eclipse

Eclipse Preferences for Ptolemy II

Set up Eclipse for Ptolemy II

Eclipse is unaware of the version control aspects of the project.

Eclipse is unaware of the version control aspects of the project, use the shell version of

Subversion to update the tree.

Eclipse is aware of the Subversion aspects of the project.

Simple Debugging Session

Optional Extensions

Troubleshooting

Other local pages:

Profiling using TPTP

Install Eclipse

Download the latest version of Eclipse from http://www.eclipse.org.

In April, 2009, we chose Eclipse for RCP/Plug-in Developers, which is 175Mb. The

Eclipse for RCP/Plug-in Developers version includes the plug-in development environment

(PDE), which is needed by the backtrack facility, which is an optional part of Ptolemy II that

allows models to restore their old state. If the version of Eclipse that you install does not

have the PDE, then there will be build errors, which can be fixed by excluding

ptolemy/backtrack/ from the build.

1.

(Mac OS X): Untar the download file in /Applications, which will create

/Applications/eclipse/Eclipse.app.

(Windows): Unzip the download file into an appropriate place, such as C:\Program
Files, which will create C:\Program Files\eclipse\eclipse.exe.

If eclipse\eclipse.exe is not created, then it could be that the security policy on your

machine is preventing the creation of .exe files. If this is the case, then try running unzip
from the command line.

2.

Finish the installation by running /Applications/eclipse/Eclipse.app or

eclipse/eclipse.exe.

The first time this is run it will complete the installation process.

(Windows): If Eclipse fails to start with the message "Windows cannot access the specified

device, path or file. You may not have the appropriate permisions to access the item", then it

may be necessary to make eclipse.exe and a dll executable:

chmod a+x eclipse.exe

3.

If you get the message "The Eclipse executable launcher was unable to locate its

companion shared library", then run the following command in the eclipse directory.

find . -name *.dll -exec chmod a+x {} \;

After the first run, normal start-up will occur whenever it is started.

Eclipse Preferences for Ptolemy II

The default configuration of Eclipse has some difficulties with Ptolemy II, so a few changes are

necessary.

(Mac OS X): There is usuall no need to set the memory size for Eclipse under Mac OS X. By

default, it is set to 512 megabytes. For details about setting the memory size, see: Eclipse

Workbench User Guide/Tasks/Running Eclipse.

1.

(Windows): There is usually no need to set the memory size for Eclipse. By default, it is set

to 512 megabytes in the eclipse.ini file.

In Windows, create a shortcut to eclipse.exe by going to the directory where Eclipse is

installed, right clicking on eclipse.exe and selecting Create Shortcut.

To add Eclipse to the start menu, right click on the shortcut and select Pin to Start
Menu

2.

Eclipse requires some customization to build Ptolemy II and to keep the Ptolemy II coding

style. In the steps below, we outline changes to be made in the Eclipse Preferences window.

Under Windows the Eclipse Preferences window is invoked via Window | Preferences.

Under Mac OS X the Eclipse Preferences window is invoked via Eclipse | Preferences.

For each of the changes, hit Apply. When all the changes are done, hit OK, which will close

the Eclipse Preferences Window.

3.

By default, Eclipse rebuilds a project when any change is made to a file. This will result in

thousands of errors when Ptolemy II is first checked out, and during normal usage, can be

annoying because of the pauses it creates. We suggest disabling this feature as follows:

While still in the preferences window

(Mac OS X: Eclipse | Preferences)

(Windows: Window | Preferences)

1.

Select General | Workspace2.

Deselect Build automatically.3.

Click Apply.4.

4.

Ptolemy II source files are worked on by many people with different editors. Unfortunately,

different text editors interpret tab characters differently, so it is best to use spaces rather than

tabs.

Sadly, the Eclipse developers have chosen to use tabs as spaces, so you must adjust the

Eclipse Java Formatter if you plan on contributing code to the Ptolemy II tree.

Also, it is best if files end with new line characters, so that we can run line oriented scripts on

them.

In addition, we currently do not want the Eclipse Formatter to format comments. We hope to

change this policy in the future.

5.

We handle these changes together:

While still in the preferences window (Window | Preferences), expand Java | Code
Style | Formatter

1.

Under "Active profile", Click on "New..."2.

In the "New Profile" window, enter "Ptolemy II" into the "Profile Name" entry.3.

Under "Initialize settings with the following profile", select "Java Conventions [built-in]"

(We use Java Conventions over the "Eclipse" setting because the Eclipse style uses

tabs.)

4.

Click on "OK" to close the "New Profile" window5.

A "Profile 'Ptolemy II'" window will appear. Under the "Indentation" tab, change the Tab

policy to "Spaces only".

6.

Under the "New Lines" tab, select "at end of file"7.

Under the "Comments" tab,

unselect "Enable Javadoc comment formatting"

unselect "Enable block comment formatting"

unselect "Enable line comment formatting"

8.

Click OK.9.

In the Preferences Window, click Apply.10.

Ptolemy II uses some features of Java 5.0. In particular, ptolemy/actor/ptalon uses

generics, which require Java 5.0 or later.

Set Eclipse to use Java 5.0 or later source code compliance.

While still in the preferences window (Window | Preferences), expand Java |

Compiler
1.

Make sure that Set "Compiler compliance level" is "1.5", "5.0" or later. Note that Java

1.5 is the same as Java 5.0. What we don't want is "1.4" or "4.0".

2.

Click Apply.3.

Note the following restrictions about versions of Java and Eclipse under Mac OS X:

Eclipse 3.4.0 will not start up for me under Java 1.6.0_05 on the Mac. This means that

if "java -version" returns 1.6.0_05, then Eclipse failed to start for me.

Within Eclipse 3.4.0 which was started with Java 1.5.0_13, you can compile and run

your project with either Java 1.5.0_13 or Java 1.6.0_13.

Eclipse 3.4.0 Java Projects that include Eclipse Plug-ins don't work under either Java

1.5.0_13 or Java 1.6.0_05 on the Mac

For details, see http://chess.eecs.berkeley.edu/ptexternal/wiki/Main/Mac.

6.

Eclipse has very good compiler error/warning. One of the warnings complains if a

Serializable class does not have serialVersionUID declared. Since this warning is only useful

if you are tightly managing serialization, we turn it off:

While still in the preferences window (Window | Preferences), Expand Java |

Compiler | Errors/Warning
1.

Under "Potential programming problems", change "Serializable class without

serialVersionUID" to "Ignore"

2.

Under "Generic Types", change "Unchecked generic type operation" to "Ignore".3.

Under "Generic Types", change "Usage of a raw type" to "Ignore".4.

Click Apply. If you are prompted for a full rebuild, click Yes.5.

7.

The PtDoc Doclet in $PTII/doc/doclets/PtDoclet.java requires tools.jar, which

is only in the Java Development Kit (JDK), not the Java Runtime Environment (JRE). So, be

sure that a JDK is selected for building, not a JRE.

(Mac OS X): select JVM 1.5.0 (Mac OS X Default).

8.

While still in the preferences window

(Windows: Window | Preferences)

(Mac OS X: Eclipse | Preferences)

Select Java | Installed JREs1.

Verify that the checked line corresponds with a JDK, not a JRE.2.

Click OK in the Preferences window to apply all of the above changes.9.

Setting up Eclipse to manage your Ptolemy II development environment

Eclipse will manage your ptII code tree as a project called the ptII project. There several ways to

set up the ptII project,

Eclipse is unaware of the version control aspects of the project.

If you are downloading the source from major Ptolemy release, and don't want to update

regularly, then use this choice

(No Eclipse Subversion plug-in (Subversive), No Subversion (svn) from the command line)

1.

Eclipse is unaware of the version control aspects of the project, use the shell version of

Subversion to update the tree.

(No Eclipse Subversion plug-in (Subversive), use Subversion (svn) from the command line)

2.

Eclipse is aware of the Subversion aspects of the project. You can use both Eclipse and

shell version of Subversion to update the tree.

(Use both the Eclipse Subversion plug-in (Subversive) and the shell svn command)

3.

Without Subversive, you'll need to manage the Subversion aspects in the usual way, i.e. with

Subversion commands being submitted to a bash shell. With Subversive, Eclipse will do all sorts

of things to "help" you. Most of these things are good, but there is a learning curve.

Please choose one of the methods below to set up Eclipse for Ptolemy II.

1. Eclipse is unaware of the version control aspects of the project. (No Subversion)

If you are downloading the source from major Ptolemy release, and don't want to update regularly

Download a ptII source tree from http://ptolemy.eecs.berkeley.edu/ptolemyII
/ptIIlatest

1.

Configure the .classpath and .project files. See .classpath.default. below.2.

Create the ptII project

In File | New | Project, select 'Java project'. In the 'Contents' box, click on 'Create

project from existing source' and browse to the PTII directory. Finish.

When asked if you want to shift to the Java perspective, click on Yes.

3.

OR

2. Eclipse is unaware of the version control aspects of the project, use the shell version of

Subversion to update the tree.

Install Subversion:

Tortoise SVN - Windows GUI Client

If you are not installing Subversive, then choose TortoiseSVN

Cygwin - Windows command line client

1.

If you are more comfortable with a command line, then choose Cygwin. Make sure that

you also install Cygwin's Subversion package.

To check out the ptII svn repository with read-only access:

svn co svn://source.eecs.berkeley.edu/chess/ptII/trunk ptII

Note: Most users will select svn:// because they will be accessing the tree with

read-only Subversion access.

If you have an ssh account on source.eecs.berkeley.edu, then check out ptII

with read/write access:

svn co svn+ssh://source.eecs.berkeley.edu/chess/ptII/trunk ptII

Or, if your user id on source.eecs is different than your current user id on your

machine:

svn co svn+ssh://yourID@source.eecs.berkeley.edu/chess/ptII/trunk

Configure the .classpath and .project files. See .classpath.default. below.

Create the ptII project

In File | New | Project, select 'Java project'. In the 'Contents' box, click on

'Create project from existing source' and browse to the PTII directory. Finish.

When asked if you want to shift to the Java perspective, click on Yes.

OR

3. Setting up Eclipse for use with Subversion: Installing Subversive

There are at least two Subversion plugins for Eclipse, Subversive and Subclipse. Either will work,

for a brief comparison, see Subclipse vs. Subversion. The instructions below are for Subversive.

To use Subclipse, see Installing Subversion (SVN) into Eclipse.

The Subversive Eclipse plug-in adds Subversion to Eclipse. After installation, you can use either

Eclipse to manage your project, or the svn from the command line.

Follow the Subversive installation instructions or these instructions below

To download Subversive, in Eclipse, follow these menus

Mac OS X: Help | Software Updates | Available Software
Windows: Help | Software Updates | Available Software.

1.

Click on "Add Site" and enter

http://download.eclipse.org/technology/subversive/0.7/update-site/

Find

Subversive SVN Team Provider (Incubation)

and click on the box next to it.

2.

Then click Install and click through the license agreement.3.

When you are prompted to restart, click No, we will restart later4.

It is required that a second package, the Subversive SVN Connectors plug-in be

installed. To do this, go back to the "Software Updates and Add-ons" window and select

Available Software | Add Site and enter

http://www.polarion.org/projects/subversive/download/eclipse/2.0/ganym

5.

Mac OS X: There is no need to install JavaHL, in fact JavaHL will likely cause problems

Select this package:

Subversive SVN Connectors
SVNKit 1.2.0 Implementation (Optional)

Windows: Note: select only one JavaHL Win32 binary. If both JavaHL 1.4.5 and JavaHL

1.5.0 are installed, then Eclipse will have problems. The version of JavaHL is dependent on

the version of command line svn that is installed on your machine.

If svn -version returns 1.4, then install JavaHL 1.4.5.

If svn -version returns 1.5, then install JavaHL 1.5.

Select these packages:

JavaHL 1.4.5 Win32 Binaries(Optional)
Native JavaHL 1.4 Implementation (Optional)
Subversive SVN Connectors

6.

Click on Install and click through the rest of the installation.7.

When prompted to restart Eclipse, do so.8.

Setup the Subversion Configuration to Sane setting

Sadly, Subversion is by default configured with nonsense initial default values for commit times

and end of line settings.

Tell Subversion to use commit times

In the default settings, if you check out files with subversion, then they will have their modification

times set to the current time. This is incorrect:

The ptII tree includes derived files that are generated by Autoconf, JavaCC and Antlr. If the

commit times are not preserved, then the source file might have a mod time later than the

derived file which means that either the tool must be run or else the build system must touch

the derived file.

1.

If the commit times are preserved, the ls -ltr will quickly show which files were changed

when

2.

To change the Subversion configuration, hunt for the .subversion/config file.

Under Windows with Cygwin, you might find it as $HOME/.subversion/config. Another place

to look is c:/Documents and Settings/yourlogin/Application Data/Subversion
/config.

On the Mac, try /Users/yourlogin/.subversion.

If the directory does not exist, try running svn --version to create the directory.

Make this change to .subversion/config

Set use-commit-times to make checkout/update/switch/revert
put last-committed timestamps on every file touched.
use-commit-times = yes

Tell Subversion to automatically set the eol style

With the default settings, if you use Subversion to add a makefile, then the file will be checked in

with binary settings. When the file is checked on out non-Windows platforms, then the file will have

\r\n characters, which will break Solaris /usr/ccs/bin/make and cause other problems.

In addition, we would like keyword strings like $Id: eclipse.htm 53064 2009-04-12
00:50:32Z cxh $ to be automatically expanded and updated.

Find the .subversion/config file and uncomment the enable-auto-props line so that it

looks like:

enable-auto-props = yes

Also, uncomment the [auto-props] and the section below that sets the properties for the files.

Also, set props for at least makefile, *.tcl and *.mk files. See $PTII/doc/coding
/svn-config-auto-props.txt for a more complete set of properties. The bottom of the

.subversion/config file should look like:

###
Settings for your ~/.subversion/config file. To use this:
1) Edit your ~/.subversion/config file
2) Insert the contents of this file into your
~/.subversion/config file
3) You must set "enable-auto-props" to yes
BEFORE the [auto-props] line.
_BE_SURE_ to check that [auto-props] does NOT appear twice
If you append the contents of this file at the end
Of your config file, you will need to comment out
the preexisting [auto-props] line.

Set enable-auto-props to 'yes' to enable automatic properties
for 'svn add' and 'svn import', it defaults to 'no'.
Automatic properties are defined in the section 'auto-props'.
For this to work, the "enable-auto-props = yes" line should
be before the "[auto-props]" line.
enable-auto-props = yes

[auto-props]
Section for configuring automatic properties.
The format of the entries is:
file-name-pattern = propname[=value][;propname[=value]...]
The file-name-pattern can contain wildcards (such as '*' and
'?'). All entries which match will be applied to the file.

Note that auto-props functionality must be enabled, which
is typically done by setting the 'enable-auto-props' option.
[auto-props]
*.MF = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.aart = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.ac = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.am = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.apt = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.avi = svn:mime-type=video/avi
*.bat = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.bsh = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.c = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.cat = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.cgi = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.classpath = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.cmd = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.cnd = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.conf = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.config = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.cpp = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.css = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.cwiki = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.data = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.dcl = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.doc = svn:mime-type=application/msword
*.dsp = svn:eol-style=CRLF
*.dsw = svn:eol-style=CRLF
*.dtd = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.egrm = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.ent = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.fn = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.ft = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.fv = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.g = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.gif = svn:mime-type=image/gif
*.grm = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.gz = svn:mime-type=application/x-gzip
*.h = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.handlers = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.htc = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.html = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.ico = svn:mime-type=image/x-icon
*.ihtml = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.in = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.java = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.jmx = svn:eol-style=LF
*.jpg = svn:mime-type=image/jpeg
*.jpg= svn:mime-type=image/jpeg
*.js = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.jsp = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.junit = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.jx = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.m = svn:eol-style=native;svn:keywords=Author Date Id Revision

*.m4 = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.manifest = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.mdo = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.meta = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.mf = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.mk = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.mod = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.mov = svn:mime-type=video/quicktime
*.mpg = svn:mime-type=video/mpeg
*.ms = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.n3 = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.nroff = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.patch = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.pdf = svn:mime-type=application/pdf
*.pen = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.php = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.pl = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.pm = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.png = svn:mime-type=image/png
*.pod = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.pom = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.ppt = svn:mime-type=application/powerpoint
*.project = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.properties = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.py = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.rb = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.rdf = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.rnc = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.rng = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.rnx = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.roles = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.rss = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.schemas = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.sh = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.sh = svn:eol-style=native;svn:executable
*.sql = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.svg = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.tcl = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.tgz = svn:mime-type=application/x-compressed
*.tif = svn:mime-type=image/tiff
*.tiff = svn:mime-type=image/tiff
*.tld = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.txt = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.types = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.vm = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.vsl = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.wsdd = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.wsdl = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xargs = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xcat = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xconf = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xegrm = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xgrm = svn:eol-style=native;svn:keywords=Author Date Id Revision

*.xhtml = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xhtml2 = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xlex = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xlog = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xls = svn:mime-type=application/excel
*.xmap = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xml = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xroles = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xsamples = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xsd = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xsl = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xslt = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xsp = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xtest = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xul = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xweb = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.xwelcome = svn:eol-style=native;svn:keywords=Author Date Id Revision
*.zip = svn:mime-type=application/zip
.htaccess = svn:eol-style=native;svn:keywords=Author Date Id Revision
INSTALL = svn:eol-style=native;svn:keywords=Author Date Id Revision
KEYS = svn:eol-style=native;svn:keywords=Author Date Id Revision
LICENSE = svn:eol-style=native;svn:keywords=Author Date Id Revision
Makefile = svn:eol-style=native;svn:keywords=Author Date Id Revision
NOTICE = svn:eol-style=native;svn:keywords=Author Date Id Revision
README = svn:eol-style=native;svn:keywords=Author Date Id Revision
abs-linkmap = svn:eol-style=native;svn:keywords=Author Date Id Revision
abs-menulinks = svn:eol-style=native;svn:keywords=Author Date Id Revision
makefile = svn:eol-style=native;svn:keywords=Author Date Id Revision

See Subversion Users: Re: Setting svn:eol-style and http://maven.apache.org
/developers/svn-eol-style.txt

BTW - To set the style on already checked in file, run:

svn propset svn:eol-style native filename

To set the keywords on an alredy checked in file, run: svn propset svn:keywords "Author Date Id

Revision" filename Then run svn commit to commit the change.

SSH Configuration.

If you will be accessing the ptII repository with read/write access, then you will need to do a little

more configuration concerning passwords.

Note: Most users will not need to do this configuration because they will be accessing the tree

with read-only Subversion access. Read-only users can skip to Check Out Ptolemy II from the

Subversion repository

To access the ptII repository with read/write access, you will need configure Subversive to use

your password. If don't do this step and you leave the default settings, and have Cygwin ssh

installed, then c:/cygwin/bin/ssh.exe window will pop up each time ssh is called.

The fix is to set Subversive to use SVNKit Window | Preferences | Team | SVN | SVN

interface | SVNKit (Pure Java) | OK

Check Out Ptolemy II from the Subversion repository

Below we describe how to set up Eclipse so Eclipse manages the Subversion interaction.

Eclipse will manage your ptII code tree as a project called the ptII project. Assuming Eclipse is

running:

Install Subversive by following the instructions above.1.

In Eclipse, add the ptII SVN Repository: Window | Show View | Other | SVN | SVN
Repositories

2.

In the SVN Repository view, right click, select New and set the url.

To check out the ptII svn repository with read-only access:

https://source.eecs.berkeley.edu/svn/chess/ptII

or

svn://source.eecs.berkeley.edu/chess/ptII

Note: Most users will select https:// or svn:// because they will be accessing the tree

with read-only Subversion access.

If you have an ssh account on source.eecs.berkeley.edu, then check out ptII with

read/write access:

svn+ssh://source.eecs.berkeley.edu/home/svn/chess/ptII

Or, if your user id on source.eecs is different than your current user id on your machine:

svn co svn+ssh://yourID@source.eecs.berkeley.edu/chess/ptII

Read/write users will be prompted for their source.eecs.berkeley.edu username and

password. This typically happens more than once since in case the svn+ssh protocol is

being used passwords are not cached.

3.

If you get a "Certificate Problem" window, then select Trust or Trust Always. For details

and a workaround, see Certificate is not issued by a trusted authority.

4.

In the SVN Repository view, right click on trunk and select Find/Check out As

Be sure to check out the trunk not the entire tree, which include all the

branches and the trunk.

Follow the wizard, creating selections as follows:

In the "Check Out As" window, use the default, Check out as a project
configured using the New Project Wizard, then hit Finish.

In the "Select a wizard" window, select Java | Java Project, then hit Next.

In the "Create a Java Project" window,

set "Project Name" to: ptII
set "Project Layout" to Use project folder as root for sources and
class files. This is done so that $PTII/bin will contain the Ptolemy II command

5.

line scripts instead of the *.class files created by Eclipse.

Click Finish.

If you see a Confirm Overwrite Window that says:

The project you created, ptII, contains resources other
than the standard .project file. If any of those
resources have the same name and relative location of a
resource you are checking out, the local resource will
be replaced with the resource from the repository

then you probably did not change "Project Layout" as per above. Click cancel and

recreate the Java Project.

In the "Open Associated Perspective?" window, click "Yes".

Wait for the checkout to finish. Go get coffee.

Note:If you did not disable build automatically, as suggested above, then Eclipse will build

the project and produce thousands of errors. This is not really a problem. You will fix the

errors below with the .classpath.default file.

6.

You will want to view the project in the Java perspective. If you aren't already in the Java

perspective, select Window | Open Perspective | Java in the menu. By default, Eclipse

offers a "Package Explorer" as the main navigation mechanism for the source files. Many

developers much prefer to use the "Navigator." To get the Navigator, select Window | Show
View | Navigator in the menu. You can now browse the source files.

7.

Find the file in the ptII home directory called .classpath.default and copy it into a new

file called .classpath.

Note that you can use the Eclipse Navigator browse to the .classpath.default file,

open the file, copy the contents, open .classpath, paste the contents and save

.classpath.

Or, you can use Windows Explorer or the shell.

8.

In Eclipse, perform a Refresh on the ptII project by Window | Open Perspective | Java
 Go to the Package Explorer or the Navigator.

 Right mouse click on the ptII icon and select Refresh.

Note:If you do not do copy .classpath.default and select "Refresh", then Eclipse will

produce thousands of errors. This is not really a problem. It reflects that you probably don't

have installed many optional packages that are needed to build subsets of Ptolemy II. You

can ignore the errors (not advised, since they will mask errors you make), or you can copy

the .classpath.default file and rebuild. Alternatively, you can install the optional

packages and run configure.

9.

Build Ptolemy II by selecting Project | Build All. (If Build All is greyed out, then perhaps

"Build Automatically" was not disabled and Ptolemy has been built. See above for more

about Build Automatically.) You will get many warnings that you can ignore, but hopefully no

errors.

10.

Running Ptolemy II

In the Run menu, select "Run Configurations...".1.

In the resulting dialog, select "Java Application" and click "New".2.

In the dialog, fill in the boxes as follows:

Name: Vergil
Project: ptII
Main class: ptolemy.vergil.VergilApplication

3.

Press the Run button.4.

The Ptolemy II welcome window should appear.

You may now wish to read the Using Vergil tutorial.

Simple Debugging Session

Locate ptolemy/vergil/VergilApplication in the Explorer and double click. Place a breakpoint

on the first line of main() by using Run | Add/Remove Breakpoint
1.

Tell Eclipse which class to run with Run | Run. On the Main tab, select the Ptolemy II

package and enter ptolemy.vergil.VergilApplication as Main class.

2.

Press the Run button3.

To debug, quit Vergil, and place a breakpoint in, say, the fire() method of

ptolemy.domains.ct.kernel.CTBaseIntegrator. Then Run | Debug, and as above. Open the

Lorenz CT demo from the Quick Tour and run it.

4.

Optional Extensions

Ptolemy II includes a number of packages that rely on software that you may or may not have

installed, such as MATLAB, the Java comm package (for serial port connections), joystick support,

Java Advanced Imaging (JAI), the Java Media Framework (JMF), and Java 3D. If you wish to use

or extend these features, you will need to perform a few extra steps. These steps require

execution of a script called "configure" in the Ptolemy II home directory, which in turn requires (on

Windows) installation of Cygwin, a package that offers Unix-like facilities within Windows. You can

find instructions for installing Cygwin at http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIlatest

/cygwin.htm.

The procedure below will modify the .classpath file that is provided in the version control repository

to customize it for the software that you have installed. The procedure is as follows:

Start up Cygwin bash shell.1.

Set the PTII variable and export it

Windows:

export PTII=c:/Documents\ and\ Settings/yourLogin/workspace/ptII

Mac:

export PTII=c:/Users/yourLogin/workspace/ptII

2.

cd to the PTII directory3.

cd "$PTII"

Note that we use double quotes around PTII because the value of PTII has spaces in it.

Run configure:

./configure

This will create $PTII/.classpath

4.

If you plan on running the Ptolemy II startup scripts in $PTII/bin on the command line, you

will probably want to run the following commands within Cygwin bash:

cd $PTII/bin
make

5.

In Eclipse, perform a Refresh on the ptII project by WindowOpen Perspective | Java
 Go to the Package Explorer or the Navigator.

 Right mouse click on the ptII icon and select Refresh.

This will cause Eclipse to see the new ptII/.classpath and to build the project (or you

may have to manually rebuild if you turned off automatic rebuild).

6.

Synchronizing with the repository

In the Navigator view scroll/open until you see the resource (directory or file) to be

synchronized.

1.

Right click that resource and select Team->Synchronize With Repository...2.

The Synchronize view should then be visible.3.

Select the Incoming, Outgoing, or Incoming/Outgoing menu bar icon as appropriate4.

Restoring a file from the repository

In the Navigator view scroll/open until you see the resource (directory or file) to be restored.1.

Right click that resource and select Replace With->Latest From Head.2.

Copying Files

Usually, it is better to extend Java classes than to copy them, but sometimes copying files under

Subversion is useful. To copy files, use the svn cp command. Do not drag and drop directories

as the directories contain a .svn directory that will have settings for the source location. Instead,

use svn cp. See also svn mv.

Debugging Tcl Tests

Go to Windows -> Open Perspective -> Java.1.

In Package Explorer, locate ptjacl.jar -> tcl.lang -> Shell.class -> Shell and highlight it.

For some reason Eclipse sometimes hides certain jar files. In this case you have

to add new a Debug Configuration (in the menu Run -> Debug Configurations...)

in Eclipse similar as the decription in section Running Ptolemy II, then choose the

ptII project as Project and use tcl.lang.Shell as Main class. The remaining steps

are described below.

2.

Go to Run -> Debug...3.

Select Arguments tag.4.

In Program arguments, put alljtests.tcl or any individual test tcl file.

(E.g. SimpleDelay.tcl)

5.

In VM arguments, put -Dptolemy.ptII.dir=your PtII directory
(E.g. -Dptolemy.ptII.dir=c:\hyzheng\ptII).

In case your directory path contains spaces, you need to use quotes. (E.g.

-Dptolemy.ptII.dir="c:\my workspace\ptII").

6.

Select Local directory, browse to the directory containing the tcl tests.

(E.g. C:\hyzheng\ptII\ptolemy\domains\de\lib\test)

7.

Select Debug.8.

The nice thing of using Eclipse is that you can very easily locate where the exception is thrown by

clicking the classes listed in the stack trace. You may further register a breakpoint to do more

diagnosis.

Troubleshooting

Preferences

If you have already used Eclipse and you would like to start over with new projects and

preferences, remove the workspace directory in the Eclipse directory. The workspace directory

will only appear if you have already run Eclipse. Note that removing the workspace directory

will cause Eclipse to 'forget' about any projects that you may have set up

Rebuilding Briefly flashes a window

If you have problems where clicking on build briefly flashes up a window, look in

$PTII/.classpath for and empty exclusion that looks like ||

If you have problems with the classpath, look in the workspace/.metadata/log file that is in

the directory where eclipse is installed. For more information about the .metadata directory, see

below.

Eclipse takes a long time to start up

If Eclipse takes a long time to start up, then the problem could be a problem in your .metadata file.

Basically, when eclipse starts up, it might try to update H:/workspace/.metadata . The

solution is covered in http://www.eclipse.org/documentation/html/plugins
/org.eclipse.platform.doc.user/doc/tasks/running_eclipse.htm: The way I

figured this out was by running Norton Antivirus and doing View -> File System Realtime Scan

Statistics and then I noticed that my machine was updating H:/workspace/.metadata

I think I introduced the problem by clicking on the Eclipse.exe binary and selecting Pin to Start

Menu. My solution was to remove the Eclipse bogus entry in the start menu and then create a

shortcut, change Start in property and then pin that shortcut to my start menu.

Ptolemy Ptutorial

Berkeley, CA
April 16, 2009

Writing Actors

Ben Lickly

Isaac Liu

Ben Lickly and Isaac Liu 2 of 10 Ptolemy Tutorial, April 16, 2009

Basic Terminology

A model is a a set of interconnected actors and one

director

Actor

Input & output ports connected by relations

Communicates using tokens

When it is fired it produces and consumes tokens

Director

Implementation of semantics for component interaction

Ben Lickly and Isaac Liu 3 of 10 Ptolemy Tutorial, April 16, 2009

Simple Ptolemy II Model

Director

Actors Relations

Ben Lickly and Isaac Liu 4 of 10 Ptolemy Tutorial, April 16, 2009

Anatomy of an Actor

Input Port

Output Port

Port Parameter

Ben Lickly and Isaac Liu 5 of 10 Ptolemy Tutorial, April 16, 2009

Object- vs. Actor-Oriented Design

Actor-orientation: Actors make things happen

actor name

data (state)

ports Input

data

parameters

Output

data

class name

data

methods

call return

Object-orientation: Things happen to objects

TextToSpeech

initialize(): void

notify(): void

isReady(): boolean

getAudio(): double[]

Example by Edward Lee

Ben Lickly and Isaac Liu 6 of 10 Ptolemy Tutorial, April 16, 2009

Abstract Semantics

Flow of control

Initialization

Execution

Finalization

preinitialize()
declare port types

set scheduling information

change model structure

initialize()
initialize local variables

Ben Lickly and Isaac Liu 7 of 10 Ptolemy Tutorial, April 16, 2009

Abstract Semantics

Flow of control

Initialization

Execution

Finalization iterate

Ben Lickly and Isaac Liu 8 of 10 Ptolemy Tutorial, April 16, 2009

Abstract Semantics

Flow of control

Initialization

Execution

Finalization
wrapup()

display final results

Ben Lickly and Isaac Liu 9 of 10 Ptolemy Tutorial, April 16, 2009

Writing an example actor

Let's try creating an actor in Java

Ptolemnizer actor:

Replaces “t” in input string with “pt”

Ben Lickly and Isaac Liu 10 of 10 Ptolemy Tutorial, April 16, 2009

Caveats

In order to ensure domain-polymorphism, actors should

not update state in their fire method.

To be copied correctly, actors should implement the

clone method.

Must include variable initializations and relative type

constraints.

Directors

Stavros Tripakis
Researcher, UC Berkeley

Ptolemy Ptutorial, Apr 15, 2009

Tripakis: 2

Actors

Tripakis: 3

Directors

Tripakis: 4

Hierarchy

sensors

leader

Acc

Ba

bang-bang PID

follower

controller actuators

S

Tripakis: 5

Directors in Ptolemy

•

Tripakis: 6

Example execution sequence

Tripakis: 7

Actor and Director Protocols

SDF actor

SDF director

Domain-polymorphic actor

Tripakis: 8

Extension Exercise

Build a director that fires actors in left-to-right order, as they are laid

out on the screen.

Tripakis: 9

The LeftRightDirector
public class LR extends Director {

 public Parameter iterations;

 public LR(CompositeEntity container, String name)

 throws IllegalActionException, NameDuplicationException {

 super(container, name);

 iterations = new Parameter(this, "iterations");

 iterations.setExpression("10");

 iterations.setTypeEquals(BaseType.INT);

 _itercnt = 0;

 }

 private int _itercnt;

 public void initialize() throws IllegalActionException {

 super.initialize();

 _itercnt = 0;

 Nameable container = getContainer();

 if (container instanceof CompositeActor) {

 java.util.List<Actor> myactors = ((CompositeEntity) container).entityList();

 ActorXCoordinateComparator comp = new ActorXCoordinateComparator();

 java.util.Collections.sort(myactors, comp);

 Iterator actorIter = myactors.iterator();

 while (actorIter.hasNext()) {

 Actor a = (Actor) actorIter.next();

 _debug("---");

 _debug(a.getDisplayName());

 _debug("---");

 }

 }

 }

...

Tripakis: 10

The LeftRightDirector
...

 public boolean postfire() throws IllegalActionException {

 super.postfire();

 int iters = ((IntToken)iterations.getToken()).intValue();

 if (_itercnt < iters) {

 _itercnt++;

 return true;

 }

 return false;

 }

 private class ActorXCoordinateComparator implements Comparator<Actor> {

 public int compare(Actor o1, Actor o2) {

 double[] location1 = { Double.NEGATIVE_INFINITY,

 Double.NEGATIVE_INFINITY };

 double[] location2 = { Double.NEGATIVE_INFINITY,

 Double.NEGATIVE_INFINITY };

 List<?> locations = ((Entity) o1).attributeList(Locatable.class);

 if (locations.size() > 0) {

 location1 = ((Locatable) locations.get(0)).getLocation();

 }

 locations = ((Entity) o2).attributeList(Locatable.class);

 if (locations.size() > 0) {

 location2 = ((Locatable) locations.get(0)).getLocation();

 }

 if (location1[0] < location2[0]) {

 return -1;

 } else if (location1[0] > location2[0]) {

 return 1;

 } else {

 return 0;

 }

 }

 }

}

Tripakis: 9

The LeftRightDirector
public class LR extends Director {

 public Parameter iterations;

 public LR(CompositeEntity container, String name)

 throws IllegalActionException, NameDuplicationException {

 super(container, name);

 iterations = new Parameter(this, "iterations");

 iterations.setExpression("10");

 iterations.setTypeEquals(BaseType.INT);

 _itercnt = 0;

 }

 private int _itercnt;

 public void initialize() throws IllegalActionException {

 super.initialize();

 _itercnt = 0;

 Nameable container = getContainer();

 if (container instanceof CompositeActor) {

 java.util.List<Actor> myactors = ((CompositeEntity) container).entityList();

 ActorXCoordinateComparator comp = new ActorXCoordinateComparator();

 java.util.Collections.sort(myactors, comp);

 Iterator actorIter = myactors.iterator();

 while (actorIter.hasNext()) {

 Actor a = (Actor) actorIter.next();

 _debug("---");

 _debug(a.getDisplayName());

 _debug("---");

 }

 }

 }

...

Tripakis: 10

The LeftRightDirector
...

 public boolean postfire() throws IllegalActionException {

 super.postfire();

 int iters = ((IntToken)iterations.getToken()).intValue();

 if (_itercnt < iters) {

 _itercnt++;

 return true;

 }

 return false;

 }

 private class ActorXCoordinateComparator implements Comparator<Actor> {

 public int compare(Actor o1, Actor o2) {

 double[] location1 = { Double.NEGATIVE_INFINITY,

 Double.NEGATIVE_INFINITY };

 double[] location2 = { Double.NEGATIVE_INFINITY,

 Double.NEGATIVE_INFINITY };

 List<?> locations = ((Entity) o1).attributeList(Locatable.class);

 if (locations.size() > 0) {

 location1 = ((Locatable) locations.get(0)).getLocation();

 }

 locations = ((Entity) o2).attributeList(Locatable.class);

 if (locations.size() > 0) {

 location2 = ((Locatable) locations.get(0)).getLocation();

 }

 if (location1[0] < location2[0]) {

 return -1;

 } else if (location1[0] > location2[0]) {

 return 1;

 } else {

 return 0;

 }

 }

 }

}

Ptolemy Tutorial 2009

Man-Kit Leung
Berkeley, CA

April 15, 2009

Model-to-Code

 Transformation

Var v1, v2,

Var vv1, vv2,

Var v11, v12,

Function foo() {

…

…

}

Function bar () {

…

…

}

Program:…

Leung 2 April 15, 2009 UC Berkeley

Goal

Transform Ptolemy models to any

text or languages

How: Learn how to customize the

Ptolemy code generator.

Leung 3 April 15, 2009 UC Berkeley

Some Basics before we start…

CodeGenerator
--

+ generateBodyCode()
+ generateInitializeCode()

+ generatePreinitializeCode()
+ generateSharedCode()
+ generateWrapupCode()

 …

CodeGeneratorAdaptor
--

+ generateFireCode()
+ generateInitializeCode()

+ generatePreinitializeCode()
+ generateSharedCode()
+ generateWrapupCode()

 …

1 n

Director

…

AtomicActor

…

TypedCompositeActor

…

Ptolemnizer

…

FFT

…

DEDirector

…

extends

1 n

CCodeGenerator

…

ProgramGenerator

…

Leung 4 April 15, 2009 UC Berkeley

Target Hierarchy

generi

c

progra

m

procedura

l

C Java

VHDL

HTML

MP

I
posi

x
win3

2
pret

…

$PTII/ptolemy/cg/kernel/generic/

$PTII/ptolemy/cg/kernel/generic/program/

Leung 5 April 15, 2009 UC Berkeley

Sections of the Generated Content:

IncludingFiles

--

SharedCode

--

VariableDeclaration

--
PreinitizeCode

--
InitializeCode

--

BodyCode

--

WrapupCode

Leung 6 April 15, 2009 UC Berkeley

Non-trivial Components

If we need to generate complex code for an

atomic component (e.g. FFT) that is highly

parameterizable…

Leung 7 April 15, 2009 UC Berkeley

Template

We can use our template facility.

Var $v1;

Var $v2;

Var $v3;

Function $foo () {

 loop i = 1 to $bound:

 bar(i);

 end loop

}

Static Text

Holes
(parameterized text)

Ptolemy Code Generation Tutorial 2009
Presenter: Man-Kit Leung (mankit@eecs.berkeley.edu)
4/15/2009

Model-to-Code Transformation
Customizing the Code Generator for Different Purposes

Goal#1: Transform Ptolemy models to any languages or text
Goal#2: Learn how to customize the Ptolemy code generator.

Example#1: Generating a simple HTML page that describes the model

Desired code:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title> modelName </title>
 </head>

 <body>
 CompositeActorName contains

 componentName1
 componentName2
 componentName3

 </body>
</html>

1. Create a new CodeGenerator subclass
a. Create a new package/folder, named html, under $PTII/ptolemy/cg/kernel/generic/. For

convenience, I already did this and created a template file (HTMLCodeGenerator.java) so we
can fill in together.

b. Override the _generateBodyCode() and comment() methods.
2. Create new Adaptors classes

a. Under $PTII/ptolemy/cg/adaptors/generic/html/adaptors/ptolemy/actor/lib/,
Director.java, TypeCompositeActor.java, and AtomicActor.java are the three adaptor
files we need to fill in.

b. Override the _generateFireCode() method for each class.
3. Generate code!!

a. Start up Vergil (Main Class: ptolemy.vergil.VergilApplication)
b. Open or Create a Ptolemy model (e.g. File -> Open/New).
c. Under Graph -> Instantiate Attribute, type in the class of the new code generator

(e.g. ptolemy.cg.kernel.generic.html.HTMLCodeGenerator).
d. Double click on the new code generator (the blue box) to generate code.

Var v1, v2,
Var vv1, vv2,
Var v11, v12,
Function foo() {
…
…
}
Function bar () {
…
…
}
Program:…

Solution:

HTMLCodeGenerator.java:
 public String comment(String comment) {
 return "<!-- " + comment + " -->" + _eol;
 }

 public String generateCode(int section) throws IllegalActionException {
 StringBuffer code = new StringBuffer();
 code.append("<html>" + _eol +
 "<head>" + _eol +
 "<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />" + _eol +
 "<title>" + getContainer().getName() + "</title>" + _eol +
 "</head>" + _eol + _eol +

 "<body>" + _eol +
 getAdapter(getContainer()).generateFireCode() +
 "</body>" + _eol +
 "</html>" + _eol);
 return code.toString();
 }

AtomicActor.java:
 public String generateCode(int section) throws IllegalActionException {
 return "" + getComponent().getName() + "" + _eol;
 }

TypedCompositeActor.java:
 public String generateCode(int section) throws IllegalActionException {
 StringBuffer code = new StringBuffer();

 Director directorAdapter = (Director) getCodeGenerator()
 .getAdapter(((ptolemy.actor.CompositeActor) getComponent()).getDirector());

 code.append(getComponent().getName() + " contains: " +
 "" + _eol +
 directorAdapter.generateFireCode() +
 "" + _eol);

 return code.toString();
 }

Director.java:
 public String generateCode(int section) throws IllegalActionException {
 StringBuffer code = new StringBuffer();
 code.append("" + _director.getName() + "" + _eol);

 Iterator actors = ((CompositeActor) _director.getContainer()).deepEntityList().iterator();
 while (actors.hasNext()) {
 NamedObj actor = (NamedObj) actors.next();
 CodeGeneratorAdapter adapter = getCodeGenerator().getAdapter(actor);
 code.append(adapter.generateFireCode());
 }
 return code.toString();
 }

General Procedure:

1. Update the ptII tree to get the most recent code and files (Eclipse users: Team->Update.)
2. Create a new package under both $PTII/ptolemy/cg/kernel/ and $PTII/ptolemy/cg/adaptors/

hierarchies of targets (e.g. generic -> program -> html).
3. Extend the CodeGenerator and Adaptors (Director, TypedCompositeActor, and AtomicActor)

classes, as we did above.
4. Override the necessary methods (e.g. comment(), generateCode(int section), and etc.).

II. General Info:

A. Sections of the Generated Code:

You can generate code into different sections of the program by overriding the corresponding
generate*() methods. These sections allow you to make logical separation within a program. By default,
all the sections are empty. Our previous example overrides the _generateBodyCode() method, so our
generated program has a non-empty BodyCode section.

B. Target Hierarchy:

The above diagram illustrates the overall picture of the target hierarchy within the code generation
package. When adding a new target, you want to think about where to place this new target within this
hierarchy. Often, it allows code and functionality reuse if this is done properly (it means there are less
stuffs you need to override or implement on your own).

IncludingFiles

SharedCode

VariableDeclaration

PreinitizeCode

InitializeCode

BodyCode

WrapupCode

generic

program

procedural

C Java

VHDL

HTML

MPI posi win3 pret

…

$PTII/ptolemy/cg/kernel/generic/

$PTII/ptolemy/cg/kernel/generic/program/

For further references:

A simple tutorial to write an adaptor with template
http://ptolemy.berkeley.edu/conferences/07/leung_ptolemy_tutorial_codegen.doc

Detailed documentation of the template and the macro language.
http://chess.eecs.berkeley.edu/pubs/251.html

Generating code for different models of computation.
http://chess.eecs.berkeley.edu/pubs/401.html

Tutorial: HelloWorld for Model-Based Transformation

Thomas Huining Feng
CHESS, EECS, UC Berkeley

April 15, 2009

1. Create a complex transformation (File→New→Complex Transformation).

2. Create the following design.

InitModel and the Model parameter are already created automatically. ReadModel is under IO in the
library. Create edges by holding down the Ctrl key and dragging the mouse from the start to the end.
Double-click ReadModel and set modelFile as:
$PTII/ptolemy/actor/gt/demo/SinewaveOptimization/Sinewave.xml

3. Run the workflow. A window pops up with the original model in it. Close the window.

4. Right-click Transform and select “Look Inside” to edit the transformation rule.

5. Add two AtomicActorMatcher’s and one MultiplyDivide (in Actors/Math). Configure each AtomicAc-
torMatcher (double-click):

(a) Add a SubclassCriterion with superclass “ptolemy.actor.lib.Const”.
(b) Add a PortCriterion. Check the boxes to the left of output and multi, and that below output.

Connect the three actors and rename them to C1, C2 and M as below.

6. Select everything, copy (Ctrl-C), change to the Replacement tab, and paste (Ctrl-V). Delete C2.

7. Double-click C and add an AttributeCriterion. The name is “value” and the value is “$(C1.value *
C2.value)”.

8. To try it out, select the second-to-last button on the toolbar.

Enter the same file name as we entered for ReadModel:
$PTII/ptolemy/actor/gt/demo/SinewaveOptimization/Sinewave.xml

9. In the popup window, a match to the pattern is highlighted. The last 5 buttons from left to right are:

(a) Highlight previous match.
(b) Highlight next match.
(c) Replace the highlighted match.
(d) Replace all matches (whether highlighted or not).
(e) Close this window, and open the current model in an ordinary editor.

Note: Although there seem to be only 3 matches to the pattern, the status bar shows 6. (Why?)

10. Close the transformation rule window and run the workflow again.

	00Ptutorial
	01Eclipse
	02actors_tutorial_rc1.ppt
	03Ptutorial_Directors.ppt
	04Ptutorial_Directors_9_10
	05Codegen_Miniconf2009_Tutorial.ppt
	06TargetCreationTutorial
	07ModelBasedTransformationTutorial

