
1

Programming with actors

Jörn W. Janneck
Xilinx Research Labs

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 2

credits

Dave B. Parlour Xilinx Research Labs

Thomas A. Lenart   Lund University

Robert Esser University of Adelaide



2

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 3

The FPGA Platform: 
Huge amounts of fine-grained concurrency.

... along with specialized blocks (multipliers, RAM, ALUs, processors...)

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 4

The Problem: 
Using FPGAs to implement DSP 
applications requires circuit design 
expertise.



3

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 5

The Research Goal:
Design and build models and tools that 
make it possible for application domain
experts to program FPGAs with high-
quality implementations.

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 6

models and tools

What does it take to program with actors?

actors and dataflow as a concurrent model
Cal as the language for writing actors
driver application

tools
code generation

circuits and software and combinations thereof

animation & visualization



4

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 7

models and tools

We are focusing on...
... hardware that can be programmed.
... programming concepts that can be   

implemented. 

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 8

driver application
MPEG-4 decoder



5

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 9

driver application
MPEG-4 decoder

metrics
• 60 atomic actors

• 22 atomic actor classes

• 3307 LOC (Cal)

• LOC per actor class 
between 7 and 2054

actor constructs
• variable token rates

• static/cyclostatic rates

• data-dependent choice

• test for absence of tokens
• non-prefix-monotonic 

actors

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 10

driver application
MPEG-4 decoder

development time approx. 2 months.
approximate sizes of various models

Cal: 3,300 LOC
“architectural ” C code: 4,200 LOC
synthesizable VHDL: 15,000 LOC

Cal

VHDL



6

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 11

code generation
2D-IDCT implementation

first step to complete decoder implementation 
naive code generator has sufficient language coverage for 
IDCT compute.

10 classes
200 LOC
covers most language 
features, except...
- addressable memory
- multicycle actions

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 12

code generation
2D-IDCT, version 1

Starting architecture is very inefficient: 22 multipliers 
with 12.5% utilization.

1-D 1-DAT



7

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 13

code generation
2D-IDCT, version 2

interleave row and column streams
pipelined 1D-IDCT
result:

6 multipliers with 46% utilization 
more operator re-use costly in terms of operand routing

>100 Mhz clock

Pipelined 1-D IDCT

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 14

code generation
summary

good QoR for “naive” code generator
redesigned model compares favorably with 
existing VHDL implementations

smaller, faster, simpler to use
HDTV rate

demonstrates strength of programming 
model, rather than quality of code generator

lots of room for improvement
pipelining, folding



8

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 15

animation & visualization
actor animation (1/4)

input queues

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 16

animation & visualization 
actor animation (2/4)

input queue history



9

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 17

animation & visualization 
actor animation (3/4)

actor state variables

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 18

animation & visualization 
actor animation (4/4)

action
selection

status



10

Xilinx Research LabsPtolemy Miniconference VI, 2005-05-12  - 19

outlook
improved hardware code generation 

language coverage
optimizations

software code generation
analysis and optimization tools
debugging/visualization tools
alternative entry mechanisms

“VisualCal”


