
1

1Ptolemy Conference 2005, Berkeley, CA, USA

The Distributed-SDF Domain

Daniel Lázaro Cuadrado
Anders Peter Ravn, Peter Koch

Aalborg University
Aalborg, Denmark

2Ptolemy Conference 2005, Berkeley, CA, USA

Overview

• Motivation

• What is the Distributed-SDF domain? 

• How to use it?

• Calculation of the parallel schedule

• Client / Server Approach

• The Server

• The Client

• Software packages

• Further Work

• Conclusions



2

3Ptolemy Conference 2005, Berkeley, CA, USA

Motivation

• Ptolemy simulations are performed in one machine

• Sequentially or threaded (but sharing the same CPU)

• Memory limitations

• Locally installed memory
• JVM

• Why SDF?

• Dataflow is a good candidate formalism for distribution
• Allows for static scheduling
• One of the most popular

4Ptolemy Conference 2005, Berkeley, CA, USA

What is the Distributed-SDF Domain?

• Extended version of the existing SDF Domain that performs the 
simulation in a distributed manner
• Smaller simulation times

• For models with some degree of parallelism
• Specially those where cost(computation) > >> cost(communication)

• Allow bigger models (in terms of memory)

• Exploits the degree of parallelism many models expose in their 
topology

• It is transparent to the user

• It requires a distributed platform to perform the simulation

• Keep the existing architecture untouched and only extending it



3

5Ptolemy Conference 2005, Berkeley, CA, USA

How to use it?

6Ptolemy Conference 2005, Berkeley, CA, USA

Calculation of the parallel schedule

• To take advantage of the inherent parallelism of the model we need 
to generate a parallel schedule to determine which actors can be
executed in parallel

• Performs a topological sort of the graph that can be constructed
with the data dependencies among the actors
• The existing SDF Scheduler produces schedules in a deep-first fashion.

A

B C

D E F G

(A B D E C F G)Sequential:

Parallel: ((A) (B C) (D E F G))

t(A) + … + t(G) > t(A) + max(t(B),t(C)) + max(t(D),t(E),t(F),t(G)) + toh
Time overhead = communication + initialization <<< simulation time 



4

7Ptolemy Conference 2005, Berkeley, CA, USA

Client / Server approach

Client

Servers

Computer Network

Service Locator
(Peer Discovery)

Simulation is 
orchestrated in a 

centralized manner

8Ptolemy Conference 2005, Berkeley, CA, USA

The Server

• Prepares for discovery of a service locator
• Loads various settings as for example:

• Unicast locators (predefined location where to search for a service locator)
• The service class DistributedActorWrapper.class (class that provides the 

distributed service)
• Discovers a Service Locator

• Unicast (specific location is known)
• Multicast (no location is known)
• Both

• Creates and exports the Service
• Exports an instance of a proxy class based on the service implementation to the 

Service Locator
• This proxy allows to make RMI calls to the implementation

• Stays alive
• Maintains the registration lease with the service locator.

• The registration of the service has to be renewed.



5

9Ptolemy Conference 2005, Berkeley, CA, USA

Server (Discovery and Service Registration)

ServerClient

Service Locator

Service
Implementation

Discovery

Service
Proxy

Export

Configuration and 
service class loaded

Stays alive and renews 
the registration lease

10Ptolemy Conference 2005, Berkeley, CA, USA

The Client

• Prepare for discovery of a Service Locator
• ClientServerInteractionManager encapsulates the Jini functionality
• Calculates the number of servers required (number of actors)
• Loads various settings as for example unicast locators

• Discover a Service Locator
• Either unicast, multicast or both

• Looking up Services 
• ServiceDiscoveryManager, LookupCache DistributedActorWrapper

• Filtering Services
• Makes sure that the gathered services are alive

• It can happen that a service has died and it is still registered if the lease has not 
expired.

• Checks if there is a sufficient number of services to perform the simulation
• Map Actors onto Services

• Creates a mapping that assigns a server for every actor
• Calls to the Services (RMI)



6

11Ptolemy Conference 2005, Berkeley, CA, USA

Service Lookup

ServerClient

Service Locator

Service
Implementation

Service
Proxy

Client / Server interaction
Java RMI

Discovery

Look up Services

Service
Proxy

12Ptolemy Conference 2005, Berkeley, CA, USA

Service Interface

RemoteDistributedActor

DistributedActorWrapper java::rmi::RemoteException

 fire()
 getAddress()
 initialize()
 iterate()
 loadMoML()
 postfire()
 prefire()
 preinitialize()
 put()
 setConnections()
 setPortTypes()
 stop()
 stopFire()
 terminate()
 wrapup()

ptolemy::distributed::common::DistributedActor

java::rmi::Remote
«interface»

 fire()
 initialize()
 iterate()
 postfire()
 prefire()
 preinitialize()
 stop()
 stopFire()
 terminate()
 wrapup()

ptolemy::actor::Executable

«use»



7

13Ptolemy Conference 2005, Berkeley, CA, USA

Server and Service

Server (DistributedServerRMIGeneric)

Service (DistributedActorWrapper)

 fire()
 getAddress()
 initialize()
 iterate()
 loadMoML()
 postfire()
 prefire()
 preinitialize()
 put()
 setConnections()
 setPortTypes()
 stop()
 stopFire()
 terminate()
 wrapup()

DistributedActor

DistributedDirector

Actor

Composite 
(DistributedTypedCompositeActor)

MoML description of a 
pre-initialized actor

Class loaded from 
local storage

14Ptolemy Conference 2005, Berkeley, CA, USA

Message passing (Distributed Receivers)

• Receivers are created at every connected input port to hold tokens 
for every connection

• Two new types of distributed receivers have been created

• DistributedSDFReceiver extends SDFReceiver with an unique ID in order 
to identify Receivers when distributed

• The DistributedReceiver forwards tokens to remote services

Actor Actor

send (0, t0)

getRemoteReceivers()

receiver.put(t0)



8

15Ptolemy Conference 2005, Berkeley, CA, USA

The Service

Server (DistributedServerRMIGeneric)

Service (DistributedActorWrapper)

 fire()
 getAddress()
 initialize()
 iterate()
 loadMoML()
 postfire()
 prefire()
 preinitialize()
 put()
 setConnections()
 setPortTypes()
 stop()
 stopFire()
 terminate()
 wrapup()

DistributedActor

DistributedDirector

Actor

Composite 
(DistributedTypedCompositeActor)

…
…

DistributedTypedIORelation

inputport1, (IDa, … , IDn)
…

outputportx, (servicea, (IDi, … , IDj),
…

serviceb, (IDr, … , IDs))

port.createReceivers()

(IDa, … , IDn)
director.setListOfIds()

IDaIDn

(servicea, (IDi, … , IDj),
…

serviceb, (IDr, … , IDs))

DistributedReceiver

16Ptolemy Conference 2005, Berkeley, CA, USA

Distributed Message Passing (Decentralized)

Actor

Actor

send (0, t0)

getRemoteReceivers()

receiver.put(t0)

DistributedReceiver

(servicea, (IDi, … , IDj),
…

serviceb, (IDr, … , IDs))

Servicea

Servicea.put(t0, (IDI,…,IDj))

Server A Server B

receiverID1.put(t0)



9

17Ptolemy Conference 2005, Berkeley, CA, USA

Issuing commands in parallel and synchronization (Client)

• In order to allow parallel execution a Thread (ClientThread) is 
created to handle calls to different servers in parallel

• These threads prevent the main thread of execution to be blocked
by the remote calls to the remote services

• A synchronization mechanism to issue and access commands in 
parallel is provided by ThreadSynchronizer

• Centralized

18Ptolemy Conference 2005, Berkeley, CA, USA

Issuing commands in parallel and synchronization

DistributedSDFDirector

ClientThread1

Service
Proxy

A

ClientThread N

Service
Proxy

B

[(ClienThread 1, iterate)
…

(ClienThread N, iterate)]

commandsMap

((AB)(CDE)…)

Parallel Schedule No set of commands is 
issued before the 

previous set is 
consumed

ThreadSynchronizer

notifyAll()wait()wait()

synchronizer.setCommands()

• Gets Command
• Executes Command
• Sets Ready

• Gets Command
• Executes Command
• Sets Ready



10

19Ptolemy Conference 2005, Berkeley, CA, USA

Client’s Software Architecture

 _getSchedule()
 _getParallelSchedule()
 _scheduleInParallelConnectedActors()
 _simulateTokensCreatedLast()

DistributedSDFScheduler

SDFScheduler SDFDirector

parallelExecution: Parameter
parallelSchedule: Parameter

DistributedSDFDirector

ptolemy::distributed::client::ClientServerInteractionManager

 DistributedSDFReceiver()
 DistributedSDFReceiver()
 DistributedSDFReceiver()
 DistributedSDFReceiver()
 DistributedSDFReceiver()
 getID()

DistributedSDFReceiver

SDFReceiver

ptolemy::distributed::client::ClientThread

ptolemy::distributed::common::DistributedActor

net::jini::core::lookup::ServiceItem
ptolemy::distributed::client::ThreadSynchronizer

ptolemy::distributed::util::DistributedUtilities

java::rmi::RemoteException

«access, use»

«access, use»

«use»

«use»

«instantiate»

«use»

«use»

«access, use»

«use, instantiate»
«access»

«use»

Members:
• _rateVariables
• _externalRates
• _firingVector

Methods:
• _setFiringVector
• _simulateExternalInputs
• _countUnfulfilledInputs
• _computeMaximumFirings
• _simulateInputConsumption
• _getFiringCountmethods

were modified their visibility 
from private to protected. 

20Ptolemy Conference 2005, Berkeley, CA, USA

Software Packages

• ptolemy.distributed.actor
• DistributedDirector, DistributedReceiver, DistributedTypedCompositeActor, 

DistributedTypedIORelation
• ptolemy.distributed.actor.lib

• Library of distributed actors
• ptolemy.distributed.client

• ClientServerInteractionManager, ClientThread, ThreadSynchronizer
• ptolemy.distributed.common

• DistributedActor Interface
• ptolemy.distributed.config

• Jini config files
• ptolemy.distributed.rmi (Server classes)

• DistributedActorWrapper, DistributedServerRMIGeneric, 
RemoteDistributedActor

• ptolemy.distributed.util
• DistributedUtilities

• ptolemy.domains.sdf.kernel
• DistributedSDFDirector, Scheduler & Receiver



11

21Ptolemy Conference 2005, Berkeley, CA, USA

Further Work

• Optimization of the initialization phase
• Reduce to one single call for each actor
• Perform initialization in parallel

• Security + Robustness

• Jini -> Jxta

• Implement distributed versions of other domains

• Allow for remote loading of classes as opposed to local loading

• Pipelining

22Ptolemy Conference 2005, Berkeley, CA, USA

Pipelining

• To increase parallelism
• Can be applied to models without loops

A B C D

((A))
((A B))

((A B C))
((A B C D))

Buffering Phase:

Fully Parallel:



12

23Ptolemy Conference 2005, Berkeley, CA, USA

Conclusions

• The Distributed-SDF domain automates distributed simulation of 
SDF models.

• It does not modify the existing architecture, just extends it

• Implements common features that can be reutilized to make 
distributed versions of other domains

• Allows to speedup simulations (specially for models where the 
computation cost > communication cost)

• Allows for larger models by distributing the memory load


