
1

1Ptolemy Conference 2005, Berkeley, CA, USA

The Distributed-SDF Domain

Daniel Lázaro Cuadrado
Anders Peter Ravn, Peter Koch

Aalborg University
Aalborg, Denmark

2Ptolemy Conference 2005, Berkeley, CA, USA

Overview

• Motivation

• What is the Distributed-SDF domain? 

• How to use it?

• Calculation of the parallel schedule

• Client / Server Approach

• The Server

• The Client

• Software packages

• Further Work

• Conclusions



2

3Ptolemy Conference 2005, Berkeley, CA, USA

Motivation

• Ptolemy simulations are performed in one machine

• Sequentially or threaded (but sharing the same CPU)

• Memory limitations

• Locally installed memory
• JVM

• Why SDF?

• Dataflow is a good candidate formalism for distribution
• Allows for static scheduling
• One of the most popular
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What is the Distributed-SDF Domain?

• Extended version of the existing SDF Domain that performs the 
simulation in a distributed manner
• Smaller simulation times

• For models with some degree of parallelism
• Specially those where cost(computation) > >> cost(communication)

• Allow bigger models (in terms of memory)

• Exploits the degree of parallelism many models expose in their 
topology

• It is transparent to the user

• It requires a distributed platform to perform the simulation

• Keep the existing architecture untouched and only extending it
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How to use it?
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Calculation of the parallel schedule

• To take advantage of the inherent parallelism of the model we need 
to generate a parallel schedule to determine which actors can be
executed in parallel

• Performs a topological sort of the graph that can be constructed
with the data dependencies among the actors
• The existing SDF Scheduler produces schedules in a deep-first fashion.

A

B C

D E F G

(A B D E C F G)Sequential:

Parallel: ((A) (B C) (D E F G))

t(A) + … + t(G) > t(A) + max(t(B),t(C)) + max(t(D),t(E),t(F),t(G)) + toh
Time overhead = communication + initialization <<< simulation time 
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Client / Server approach

Client

Servers

Computer Network

Service Locator
(Peer Discovery)

Simulation is 
orchestrated in a 

centralized manner
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The Server

• Prepares for discovery of a service locator
• Loads various settings as for example:

• Unicast locators (predefined location where to search for a service locator)
• The service class DistributedActorWrapper.class (class that provides the 

distributed service)
• Discovers a Service Locator

• Unicast (specific location is known)
• Multicast (no location is known)
• Both

• Creates and exports the Service
• Exports an instance of a proxy class based on the service implementation to the 

Service Locator
• This proxy allows to make RMI calls to the implementation

• Stays alive
• Maintains the registration lease with the service locator.

• The registration of the service has to be renewed.
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Server (Discovery and Service Registration)

ServerClient

Service Locator

Service
Implementation

Discovery

Service
Proxy

Export

Configuration and 
service class loaded

Stays alive and renews 
the registration lease
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The Client

• Prepare for discovery of a Service Locator
• ClientServerInteractionManager encapsulates the Jini functionality
• Calculates the number of servers required (number of actors)
• Loads various settings as for example unicast locators

• Discover a Service Locator
• Either unicast, multicast or both

• Looking up Services 
• ServiceDiscoveryManager, LookupCache DistributedActorWrapper

• Filtering Services
• Makes sure that the gathered services are alive

• It can happen that a service has died and it is still registered if the lease has not 
expired.

• Checks if there is a sufficient number of services to perform the simulation
• Map Actors onto Services

• Creates a mapping that assigns a server for every actor
• Calls to the Services (RMI)



6

11Ptolemy Conference 2005, Berkeley, CA, USA

Service Lookup

ServerClient

Service Locator

Service
Implementation

Service
Proxy

Client / Server interaction
Java RMI

Discovery

Look up Services

Service
Proxy
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Service Interface

RemoteDistributedActor

DistributedActorWrapper java::rmi::RemoteException

 fire()
 getAddress()
 initialize()
 iterate()
 loadMoML()
 postfire()
 prefire()
 preinitialize()
 put()
 setConnections()
 setPortTypes()
 stop()
 stopFire()
 terminate()
 wrapup()

ptolemy::distributed::common::DistributedActor

java::rmi::Remote
«interface»

 fire()
 initialize()
 iterate()
 postfire()
 prefire()
 preinitialize()
 stop()
 stopFire()
 terminate()
 wrapup()

ptolemy::actor::Executable

«use»
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Server and Service

Server (DistributedServerRMIGeneric)

Service (DistributedActorWrapper)

 fire()
 getAddress()
 initialize()
 iterate()
 loadMoML()
 postfire()
 prefire()
 preinitialize()
 put()
 setConnections()
 setPortTypes()
 stop()
 stopFire()
 terminate()
 wrapup()

DistributedActor

DistributedDirector

Actor

Composite 
(DistributedTypedCompositeActor)

MoML description of a 
pre-initialized actor

Class loaded from 
local storage
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Message passing (Distributed Receivers)

• Receivers are created at every connected input port to hold tokens 
for every connection

• Two new types of distributed receivers have been created

• DistributedSDFReceiver extends SDFReceiver with an unique ID in order 
to identify Receivers when distributed

• The DistributedReceiver forwards tokens to remote services

Actor Actor

send (0, t0)

getRemoteReceivers()

receiver.put(t0)
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The Service

Server (DistributedServerRMIGeneric)

Service (DistributedActorWrapper)

 fire()
 getAddress()
 initialize()
 iterate()
 loadMoML()
 postfire()
 prefire()
 preinitialize()
 put()
 setConnections()
 setPortTypes()
 stop()
 stopFire()
 terminate()
 wrapup()

DistributedActor

DistributedDirector

Actor

Composite 
(DistributedTypedCompositeActor)

…
…

DistributedTypedIORelation

inputport1, (IDa, … , IDn)
…

outputportx, (servicea, (IDi, … , IDj),
…

serviceb, (IDr, … , IDs))

port.createReceivers()

(IDa, … , IDn)
director.setListOfIds()

IDaIDn

(servicea, (IDi, … , IDj),
…

serviceb, (IDr, … , IDs))

DistributedReceiver
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Distributed Message Passing (Decentralized)

Actor

Actor

send (0, t0)

getRemoteReceivers()

receiver.put(t0)

DistributedReceiver

(servicea, (IDi, … , IDj),
…

serviceb, (IDr, … , IDs))

Servicea

Servicea.put(t0, (IDI,…,IDj))

Server A Server B

receiverID1.put(t0)
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Issuing commands in parallel and synchronization (Client)

• In order to allow parallel execution a Thread (ClientThread) is 
created to handle calls to different servers in parallel

• These threads prevent the main thread of execution to be blocked
by the remote calls to the remote services

• A synchronization mechanism to issue and access commands in 
parallel is provided by ThreadSynchronizer

• Centralized
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Issuing commands in parallel and synchronization

DistributedSDFDirector

ClientThread1

Service
Proxy

A

ClientThread N

Service
Proxy

B

[(ClienThread 1, iterate)
…

(ClienThread N, iterate)]

commandsMap

((AB)(CDE)…)

Parallel Schedule No set of commands is 
issued before the 

previous set is 
consumed

ThreadSynchronizer

notifyAll()wait()wait()

synchronizer.setCommands()

• Gets Command
• Executes Command
• Sets Ready

• Gets Command
• Executes Command
• Sets Ready
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Client’s Software Architecture

 _getSchedule()
 _getParallelSchedule()
 _scheduleInParallelConnectedActors()
 _simulateTokensCreatedLast()

DistributedSDFScheduler

SDFScheduler SDFDirector

parallelExecution: Parameter
parallelSchedule: Parameter

DistributedSDFDirector

ptolemy::distributed::client::ClientServerInteractionManager

 DistributedSDFReceiver()
 DistributedSDFReceiver()
 DistributedSDFReceiver()
 DistributedSDFReceiver()
 DistributedSDFReceiver()
 getID()

DistributedSDFReceiver

SDFReceiver

ptolemy::distributed::client::ClientThread

ptolemy::distributed::common::DistributedActor

net::jini::core::lookup::ServiceItem
ptolemy::distributed::client::ThreadSynchronizer

ptolemy::distributed::util::DistributedUtilities

java::rmi::RemoteException

«access, use»

«access, use»

«use»

«use»

«instantiate»

«use»

«use»

«access, use»

«use, instantiate»
«access»

«use»

Members:
• _rateVariables
• _externalRates
• _firingVector

Methods:
• _setFiringVector
• _simulateExternalInputs
• _countUnfulfilledInputs
• _computeMaximumFirings
• _simulateInputConsumption
• _getFiringCountmethods

were modified their visibility 
from private to protected. 
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Software Packages

• ptolemy.distributed.actor
• DistributedDirector, DistributedReceiver, DistributedTypedCompositeActor, 

DistributedTypedIORelation
• ptolemy.distributed.actor.lib

• Library of distributed actors
• ptolemy.distributed.client

• ClientServerInteractionManager, ClientThread, ThreadSynchronizer
• ptolemy.distributed.common

• DistributedActor Interface
• ptolemy.distributed.config

• Jini config files
• ptolemy.distributed.rmi (Server classes)

• DistributedActorWrapper, DistributedServerRMIGeneric, 
RemoteDistributedActor

• ptolemy.distributed.util
• DistributedUtilities

• ptolemy.domains.sdf.kernel
• DistributedSDFDirector, Scheduler & Receiver
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Further Work

• Optimization of the initialization phase
• Reduce to one single call for each actor
• Perform initialization in parallel

• Security + Robustness

• Jini -> Jxta

• Implement distributed versions of other domains

• Allow for remote loading of classes as opposed to local loading

• Pipelining
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Pipelining

• To increase parallelism
• Can be applied to models without loops

A B C D

((A))
((A B))

((A B C))
((A B C D))

Buffering Phase:

Fully Parallel:
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Conclusions

• The Distributed-SDF domain automates distributed simulation of 
SDF models.

• It does not modify the existing architecture, just extends it

• Implements common features that can be reutilized to make 
distributed versions of other domains

• Allows to speedup simulations (specially for models where the 
computation cost > communication cost)

• Allows for larger models by distributing the memory load


