
1

5th Biennial Ptolemy Miniconference
Berkeley, CA, May 9, 2003

Embedded S/W Development Using
PTII

Modeling Extensions, Data
Representation, Compilation

Zoltan Kemenczy, Sean Simmons
Research in Motion Limited

Ptolemy Miniconference - Embedded S/W Development Using PTII 2

Contents

• Motivation and Observations
• Example Model
• Modeling Extensions
• Compilation

2

Ptolemy Miniconference - Embedded S/W Development Using PTII 3

Motivation

FROM
1. Simulate/Test Key

Algorithms Only in High Level
Language tool

2. Implement “by hand”:
• Algorithms
• Application control flow and

task structure
• Port tests
• Select data representation
• Select overflow and

precision loss methods
3. Iterate 1&2 until

satisfactory test result are
achieved

TO
1. Simulate/Test Entire System

in High Level Language tool
2. Refine HLL simulations by

specifying:
• Data path representation
• Overflow and precision loss

methods.
3. Compile result for target

once all data types are
“concrete”

Goal: Minimize impact of application changes and target changes
Goal: Reuse test vectors/harness

Change Development Strategy

Ptolemy Miniconference - Embedded S/W Development Using PTII 4

Observations

“Leaf” (Actors)
• Target specific
• Basic algorithms (+, *, FIR)
• Optimization to take

advantage of target specific
facilities – e.g. dual MAC, ACS

• Compilation “difficult”

“Structure”(MoC/Connections)
• Application specific
• Control/data flow
• Optimizations for memory

use/re-use (registers,
queues), schedules

• Compilation “easy”

Two basic types of code “leaf” & “structure”

Iteration
• 80%-20% rule
• Place one level of iteration in

atomic actors – can make use
of target H/W looping

• Use array data types for
specifying implicit iteration

• Block processing approach
• Scalars are degenerate arrays

3

Ptolemy Miniconference - Embedded S/W Development Using PTII 5

Observations - Example

“Structure”

void Rx() {
int n = ReadAvail();
if (n > MIN_SAMPLES) {

S15 buf[MAX_SAMPLES];
S15 buf2[MAX_SAMPLES];

DetectReset();
ResampleRead(n , buf);
RunAfc(n, buf);
DownConvert(n, buf);
Detect(n, buf, buf2);
....

}
}

“Leaf”

void Abs(int n, S15 *in, S15 *out)
{

int i;

for (i = 0; i < n; i++) {
out[i] = in[i] >= 0 ? in[i] : -in[i];

}
}

Ptolemy Miniconference - Embedded S/W Development Using PTII 6

Example Model

• GSM/GPRS
Physical layer
Simulation

• Dsp, McuL1 -
compilation targets

• H/W Blocks -
simulation only

• Component of
encompassing test
harness

• Typical variants:
(S/W X H/W)
Versions

4

Ptolemy Miniconference - Embedded S/W Development Using PTII 7

Example Model – The DSP

• Low-latency (left side)
tasks triggered by timing
signals

• Data-flow driven lower
rate/priority tasks (e.g. 1
Decode / 4 Bursts)

• Test-paths designed in
(e.g MCU may request a
Vdecode(data))

• TaskRequest – Union of
Records

• H.A.L Object(s) and
TMDirector hand-coded

Ptolemy Miniconference - Embedded S/W Development Using PTII 8

Example Model – A DSP Task

• “request”
initiates HAL
control

• “bbRxIn” HAL
events schedule
task

• “reply” generated
when finished

5

Ptolemy Miniconference - Embedded S/W Development Using PTII 9

Example – Summary

H/WDERadio,
Baseband,
Comm.

H/WDETiming, Coding,
Cipher

•HAL Minimal but complete
•Handle different H/W
platforms, versions
•Simulation true to HAL API

Hand-
Coded

DEHAL

•Actors
•Schedulers
•Type/Token/Port handling

Hand-
Coded

n/aPTII “Library”

•Single model / feature set
•Model “run” in different targets
(PTII, Target Simulation, Device)

CompiledTM, ADF,
SDF, FSM

MCU and DSP

GoalsTargetSimulationComponent

Ptolemy Miniconference - Embedded S/W Development Using PTII 10

Contents

• Motivation and Observations
• Example Model
• Modeling Extensions

– Asynchronous Data-Flow MoC
– MultiInstanceComposite
– ObjectMethod
– New Types
– Mixing Built-In and User Types

• Compilation

6

Ptolemy Miniconference - Embedded S/W Development Using PTII 11

Extensions: Asynchronous Data Flow
MoC

• Data flow driven like SDF
• Dynamic schedule like DE
• No notion of time (local or global) like SDF
• No global event queue like SDF

– Local queues on each port
• Loops are allowed

– Requires use of a “register” actor
– Same idea as “zero delay” in DE or Z-1 in SDF.

• Port rates computed like SDF
– Represent maximum number of tokens produced when fired
– Used to compute queue sizes for compilation

• Uses fixed firing order
– Uses prefire to evaluate actor’s readiness
– Repeatedly fires actors in sequence until all actors prefire methods

returns false

Ptolemy Miniconference - Embedded S/W Development Using PTII 12

Extensions - MultiInstanceComposite

• Same CompositeActor (MoML class), multiple (object) instances
• Contributed as a form of HOC
• Use DE or ADF MoC, contain Modal Models - typically
• Examples:

– Objects (6 or more instances) representing tracked base-stations
– Logical channels within protocol stack layers
– Easy conversion of single-channel I/O actor to multi-channel (e.g. multi-

channel FIR, same or different parameters e.g.“({{taps}})[instance]”

7

Ptolemy Miniconference - Embedded S/W Development Using PTII 13

Extensions - ObjectMethod

• HAL objects:
– are contained within TM-domain composites (s/w running on a

processor),
– control their associated h/w,
– process h/w signals and send (event) tokens to other actors (tasks).

• The ObjectMethod actor:
– is used to access HAL objects from classes nested in TM-domain

composites,
– is a form of a “tunnelling relation” to an opaque (HAL) actor instance

with SDF semantics: all inputs must be present to fire, rate one,
output (if defined by the target method) also rate one, immediately
available.

• Example: Base-band ADC Samples Receiver HAL object. Used
from Measure, Synchronize, Burst Receive classes (“tasks”).

• ObjectMethod actor safely configured using object instance
reference (ObjectToken) that also yields object class (“API”).

• Directors within HAL simulation blocks (DE) are also fired (by
ObjectMethod) after each invoke.

Ptolemy Miniconference - Embedded S/W Development Using PTII 14

Extensions – “User” Types

• Fixed-length ArrayType – multi-dimensional ArrayType with known
dimensions ‘{N,M,K,…}’. Size = N x M x K x … - ‘rectangular’. Linear
storage, inner (last) dimension first. PTII arrays and matrices map
onto this type when their dimensions are known.

• Variable-length ArrayType – Like above, but tokens of this type
have a variable outermost dimension ‘{1..N, M, K,…}.
Fundamental I/O type for our block-processing actors. Supports actor

buffer-size calculations that reflect I/O rates

• EnumType – a set of identifiers.

• UnionType – a set of Type elements, each associated with an
identifier. Identifier set is an EnumType. Represents data that
share target storage.
Exactly specifies Types that are expected to pass on a relation. Provides a

solution to the problem of passing different RecordTypes over a
relation, e.g. Request/Reply interactions with actors without losing any
fields.

8

Ptolemy Miniconference - Embedded S/W Development Using PTII 15

Extensions – Variable-Length Array

• A multi-dimensional array type with known dimensions {I,J,…} that
removes the PTII scalar-, array- and matrix-type distinction

• Tokens of this type have a variable outer-dimension: i=1..I
• Linearized (single) index and multi-dimensional (i,j,k,…) index access
• Target memory layout is along innermost (last) dimension index.
• Type Lattice: Uknown < Vlarray < Array < General

Because Array is unsized (∞ size), any Vlarray may be converted to an
Array with the same number of dimensions {{…{elemType}…}}. (We avoid
this though to preserve dimension information)

• Conversion/Compatibility (cf. ptolemy.data.type.Type, TypeLattice)
Vlarray(elem,{I,J,K,…}) can be converted to Vlarray(elem,{L,M,N…}) if I < L

and J=M, K=N,… and element types are compatible
ScalarType is equiv. to Vlarray(ScalarType,{1,1,…}) (# of dim as needed)

• LUB:
Vlarray(max(leftDim[0],rightDim[0]), dim[1], dim[2],…) where dim[i] must

be same for left and right i=1..dim.length (compatible)

Ptolemy Miniconference - Embedded S/W Development Using PTII 16

Extensions - EnumType

• Set of identifiers, some possibly associated with specified integer
values, others “unknown”

• Tokens of this type have one of the identifiers from the set as a
value

• Type Lattice: Unknown < EnumType < General.
• Conversion/Compatibility:

(In the following, typeLS = type.labelSet(), typeVS(labelSet) =
type.valueSet(labelSet))

– argLS ⊆ thisLS
– argVS((thisLS,argLS)) = thisVS((thisLS,argLS)), where “unknown” = any
– A StringToken is convertible if ∈ thisLS
– An IntToken is convertible if ∈ thisVS

• Compare:
– Equal: leftLS = rightLS ∧ right.isCompatible(left)
– Less: ¬Equal ∧ right.isCompatible(left)
– …

• LUB:
– (enumArgs) if enumArgs compatible.

9

Ptolemy Miniconference - Embedded S/W Development Using PTII 17

Extensions - UnionType

• Set of Types each associated with an identifier (“label”)
• PTII expression parser entry:

union(“name”, {id1=token1, id2=token2, … }) - registers a named union
union(“name”, {idx=tokenx}) - creates the “idx” member with tokenx value,

tokenx type must equal the type of name.idx
union({id1=token1, id2=token2, … },{idx=tokenx}) - creates type and token

• Type Compatibility:
In the following, typeLS = type.labelSet() , typeTS(labelset) =

type.typeSet(labelset)
argLS ⊆ thisLS ∧ argTS() = thisTS(argLS)
Note 1 – we chose type set equality (more stringent) not element-by-

element compatibility.
Note 2– {idx=tokenx} (RecordToken) is compatible with union({idx=tokenx})

• Type Compare:
– Equal: leftLS = rightLS ∧ leftTS() = rightTS()
– Less: ¬Equal ∧ right.isCompatible(left)
– …

• LUB (note: cls = (leftLS,rightLS)):
– (leftTS, rightTS) if leftTS(cls) = rightTS(cls), else General

Ptolemy Miniconference - Embedded S/W Development Using PTII 18

Extensions: Built-In and User Types

• Each user type is on a separate branch between Unknown and
General on the Type lattice ([1] Ch. 12).

• Consequences:
– LUB(any known built-in type, user type) = General.
– LUB(user type 1, user type 2) = General.
=> Type information is lost.

• But precise type information is essential for compilation domain
actors /

• User Actor Extensions (mixing and preserving types):
– User actors (dealing with ‘mixed’ input types) must have an empty type

constraint list to avoid output port types evaluated to ‘General’.
– Hence user actors use type functions:

Output port type = f (input port types, output port)
– (Default type functions are incorporated into actor base classes.

Methods are provided to override default type function results.)
– Do not mix built-in and user types on different relations connected to

an input multi-port since this also yields ‘General’

10

Ptolemy Miniconference - Embedded S/W Development Using PTII 19

Contents

• Motivation and Observations
• Example Model
• Modeling Extensions
• Compilation

– Strategy
– Target Actor
– Data Representation

Ptolemy Miniconference - Embedded S/W Development Using PTII 20

Compilation Strategy - Approach

• Use PTII as much as possible
– Type resolution
– Introspection

• Target environment support
– Tokens, types, ports,

parameters, schedulers,
startup code.

– Multiple target environments
can be supported in one
model.

• Target atomic actors
– Only support create(),

initialize(), prefire(), and
fire().

– Can be specialized based on
port/parameter types,
parameter values, target.

• Hook compilation process into
“top level” actor’s initialize
method to determine:
– Target data representation

selected based on target
description and
port/parameter types

– Target actor specialization
based on port/parameter
types and parameter values

– Maximum inter-actor queue
sizes can be determined
based on schedule information

– Static schedule information
• Compiled output produced

– “Dynamic” uses JNI to
interact with target simulator

– “Static” exports a target
memory image in source form.

11

Ptolemy Miniconference - Embedded S/W Development Using PTII 21

Compilation Strategy - Continued

• Assume no garbage collector
for tokens
– Tokens still immutable
– Store output tokens in a

circular buffer of token
instances attached to the
output port.

– Each connected input port has
a private read pointer on the
corresponding output port’s
circular buffer.

• Limited Support for “run-
time” data type polymorphism
– Export type information as

part of the compilation
process for actors that need
it.

– Enables writing single
implementation of actors like
RecordAssembler

– Type information can answer
following about tokens/ports:

• Size – in target words
• Length – total # of elements
• Dimension length
• Number of dimensions
• Array element type
• Record member type
• Record member offset
• Is scalar, fixed length array,

variable length array, record,
union, …

Ptolemy Miniconference - Embedded S/W Development Using PTII 22

Compilation - Target Actors

Atomic
• PTII “Front End”

– Handles type resolution issues
– Handles specialization issues
– Uses proxy strategy to

integrate back end into PTII
environment.

• Target Specific “Back End”
– create(), initialize(), prefire()

and fire() code.
– Java version as “reference”

• Test cases for Java reference
are reused for other target
back ends.

Composite with Director
• Support for TM, ADF, FSM,

and SDF.
• Implemented as part of the

target environment
• Composites without directors

are removed during
compilation.

• Same “interface” as atomic
actors: create(), initialize(),
prefire(), and fire().

• Compile-out some actors like:
BusAssembler/Disassembler,
ZeroDelay, SampleDelay, some
RecordAssembler/
Disassemblers

12

Ptolemy Miniconference - Embedded S/W Development Using PTII 23

Compilation - Target Actor Trade-
offs

• Granularity of atomic actors
– Use application to guide development
– E.g. Butterfly actor vs FFT actor.

• Specialization of atomic actors
– Development time vs. runtime overhead.
– Different targets can make different trade-offs
– E.g. In add actor test overflow mode at runtime or create multiple

specializations of add actor, one for each overflow mode. Use of a
template strategy can help here.

• Appropriate array dimension handling
– “Vector actors” “linearize” multi-dimensional arrays.

Works well for element-by-element operations like add, multiply, etc.
– Actor loop overheads vs. explicit dimension reduction/aggregation

actors (and associated data copying)
– E.g. Max actor with two dimensional input which is to act over

“columns”. Can create specialized actor implementation that contains
double loop, or can explicitly convert two dimensional input array to a
sequence of one dimensional arrays and then collect the scalar results
back into a one dimensional output array.

Ptolemy Miniconference - Embedded S/W Development Using PTII 24

Compilation – Actor Specialization

• Example: ALU (vectorized abs, add, subtract, multiply, negate…)
– PTII/java. Specialized based on operation category/operand count

• ALUBinary (Add,Subtract,Multiply…), ALUUnary (Abs, Negate,…)
ALUUnaryWithParameter (Scale, Shift,…)

– C: Additional specialization based on operation, port and parameter
types:

• ALUBinaryS1_15MultS1_15, ALUAddSW16
– DSP Asm: Additional specialization based on rounding and overflow.

• Specialization logic part of PTII actor java code, queried by
compiler, used for dynamic/static actor linking with target
composite.

13

Ptolemy Miniconference - Embedded S/W Development Using PTII 25

“API” – Data/Interface Specification

"API" XMLPTII

Target Specification (Proc. X Lang.)

Simulators
(dynamic)

Source Code
(static)

Target-Polymorphism
Static / Dynamic

External, Model Boundary
Interfaces (HAL, Other S/W

Layers)

Internal Types/Data

Ptolemy Miniconference - Embedded S/W Development Using PTII 26

“API” – cont’d

• API: abstract (target-independent) type, class, and instance data
specification. Used for:
– Model boundary interfaces (external s/w layers, HAL) – hand-coded
– PTII types / tokens within the compilation domain (reflect)

• “Target” specification resolves abstract API attributes to target
attributes (available integral type size and alignment properties,
memory word-size, endianness) during compilation.
– Sizeof, offsetof queries

• Exports to target source code (“static” compilation)
• PTII <-> target memory translations (“dynamic” compilation using

target simulators loaded by PTII)

14

Ptolemy Miniconference - Embedded S/W Development Using PTII 27

“API” – XML Elements

• <target> - list of applicable target specifications
• <include> - specification nesting, class-path relative
Scalars
• <int> - width, signed, value
• <real> - width, fractionalWidth, exponentWidth, signed, value
• <complex> - (real, imag) of <real> type, value
• <string> - traditional | hashed, value
• <enum> - (<member>)* - names only, value
Aggregates
• <array> - element type, dimensions – “fixed-length” arrays
• <vlarray> - (outer length, <array>) – “variable-length” arrays
• <struct> - (<member>)*
• <union> - ([selector,](<member>)*)
• <function> - (<inputs>, <outputs>)
• <class> - (all of the above)

Ptolemy Miniconference - Embedded S/W Development Using PTII 28

Testing Approach

• Ptolemy-embedded: PTII model with contained “Composite-Under-
Test” automatically iterated over set of target environments
(PTII, C-Simulation, Asm-Simulation).

• Using jython to:
– create test PTII “configuration”
– load moml test models containing unit-under-test
– compute test cases based on test variable sets (set1 X set2 X …)
– set model test case parameters
– run
– report

• Device-embedded target environment: “Composite-Under-Test”
linked with a target test shell to run in device under PTII model
control (from a host, input/output ports “tunnelled” over comm.
link)

15

Ptolemy Miniconference - Embedded S/W Development Using PTII 29

Conclusions

• We’ve made good progress
• There’s lot more to be done
• We must be crazy ☺

