
1

5th Biennial Ptolemy Miniconference
Berkeley, CA, May 9, 2003

The Ptolemy C Code Generator

Ankush Varma
Shuvra Bhattacharyya
University of Maryland, College Park

C Code Generation 2

Why C?
• Fast

– fewer runtime checks.
– no JVM overhead.

• Small
– full library not needed.

• Retargetability
– ANSI C source code is portable.
– No JVM needed.
– Can run on embedded systems with no JVM and no OS.

• More optimized
– C compilers have highly configurable, well-studied optimizations.

2

C Code Generation 3

Cracking the Code

• Problem: Java Bytecode is stack-based. C uses local variables.
– Use Soot to unroll the stack into local variables while transforming it into

intermediate representation.
• Problem: Java is Object-Oriented. C is not.

– Use hashing to give each method/field a different name.
– Use structures for Objects/Classes.
– Dare to use indirect function pointers (scary, but it works).

• Problem: Java relies heavily on exceptions. C has no support for
exceptions.

– Build support for exceptions in C using setjmp-longjmp.
• Problem: Java has automatic garbage collection, C does not

– Use a C-based GC as a plugin.
• Problem: Java relies on JVM or OS for some functionality

– Build a runtime library to provide the required functionality.

C Code Generation 4

The Dark Art of Java-to-C Compilation

Java Compiler

Soot

Optimizations

Code Generator

C Compiler

 Libraries, C code and headers Automatically generated makefile

Executable Application

 Optimized Jimple

Jimple Intermediate Representation

Portable Bytecode (.class file)

Java Code

3

C Code Generation 5

Trimming the Tree

• Set up MethodCallGraph
• Start with main class and all its methods as required.
• Start worklist-based algorithm

– If you see a class:
• look at its initialization methods.
• look at its superclasses.

– If you see a field:
• look at the class declaring it.
• look at the class of its type.

– If you see a method:
• look at all fields it references.
• look at all methods it calls.
• look at its class.
• look at the classes of exceptions it throws/catches.

C Code Generation 6

Strategies for Speeding Up Compilation

• Create single untrimmed shared static library
– too simplistic.
– generating library takes too long.
– code bloat.

• Generate separate library trimmed for each application
– still takes a long time.
– mostly spending time figuring out polymorphic method calls

within library classes.

4

C Code Generation 7

Strategies for Speeding Up Compilation
(continued)

• Divide code into application and library classes:
– cache library method targets in a disk file.
– compile-time analysis is simplified.
– extensible to any library classes (Ptolemy?)

User Methods
Library Methods

C Code Generation 8

0
10000
20000
30000
40000
50000
60000
70000
80000

Si
ev

e

L
oo

p

L
og

ic

St
ri

ng

Fl
oa

t

M
et

ho
d

Interpreted Java java JIT gcj Java-to-C

Faster …

5

C Code Generation 9

… and much, much smaller.

0

500

1000

1500

2000

2500
C

od
e

Si
ze

 (K
B

)

Linpac
k

Caff
ein

e

Linked
List

s

Hash
Sets

Prin
tT

est

gcj
Java-to-C

C Code Generation 10

Roadmap

• Automatic makefile generation.
• Generated fully ANSI-compliant C.
• Inheritance.
• Exceptions.
• Multidimensional arrays.
• Interfaces.
• Automatic Garbage Collection.
• Plugging in to ptolemy.
• Further generic optimizations.
• Further ptolemy-specific optimizations.
• Run java code on a DSP.

6

C Code Generation 11

