
1

5th Biennial Ptolemy Miniconference
Berkeley, CA, May 9, 2003

CAL - An actor language

Jörn W. Janneck
The Ptolemy Group
University of California, Berkeley

Ptolemy Miniconference  2

CAL people

• Chris Chang
• Johan Eker (now Ericsson Mobile Platforms, Research)

• Ernesto Wandeler (ETH Zurich)

• Lars Wernli (then ETH Zurich)

• Ed Willink (Thales Research)

• Yang Zhao



2

Ptolemy Miniconference  3

Why another language?

• Writing simple actors should be simple.
– Ptolemy II API very rich
– actor writing requires considerable skill
– BUT: Actors have a lot of common structure.

• Models should allow efficient code generation.
– actor descriptions contain a lot of "admin" code

• local precedent:
– ptlang in Ptolemy Classic (J. Buck)

Ptolemy Miniconference  4

Why another language?

We should generate actors from a more 
abstract description.

– reduces amount of code to be written
– makes writing actors more accessible
– reduces error probability
– makes code more versatile

• retargeting (other platforms, new versions of the 
Ptolemy API)

• analysis & composition



3

Ptolemy Miniconference  5

actor ID () In ==> Out :

action [a] ==> [a] end
end

Simple actors

actor A (k) Input1, Input2 ==> Output:

action [a], [b] ==> [k*(a + b)] end
end

actor Merge ()
Input1, Input2 ==> Output:

action Input1: [x] ==> [x] end
action Input2: [x] ==> [x] end

end

actor firing ≡ execution of one enabled action

Ptolemy Miniconference  6

An actor with state

actor Sum () Input ==> Output:

sum := 0;

action [a] ==> [sum]
do

sum := sum + a;
end

end



4

Ptolemy Miniconference  7

Action guards

actor FairMerge ()
Input1, Input2 ==> Output:

s := 0;

action Input1: [x] ==> [x]
guard s = 0
do

s := 1;
end

action Input2: [x] ==> [x]
guard s = 1
do

s := 0;
end

end

action
• input patterns 

declaring variables
• guard

specifying enabling conditions
• output expressions

computing output tokens
• body

modifying the actor state

Ptolemy Miniconference  8

Action schedules

actor FairMerge ()
Input1, Input2 ==> Output:

s := 0;

action Input1: [x] ==> [x]
guard s = 0
do

s := 1;
end

action Input2: [x] ==> [x]
guard s = 1
do

s := 0;
end

end

actor FairMerge ()
Input1, Input2 ==> Output:

A: action Input1: [x] ==> [x] end
B: action Input2: [x] ==> [x] end

schedule fsm State0:
State0 (A) --> State1;
State1 (B) --> State0;

end
end

actor FairMerge ()
Input1, Input2 ==> Output:

A: action Input1: [x] ==> [x] end
B: action Input2: [x] ==> [x] end

schedule regexp
(A B)*

end
end



5

Ptolemy Miniconference  9

First-class functions

actor Sieve (predicate) Input ==> Output:

filter := lambda (a) : false end;

action [a] ==> []
guard filter(a) end

action [a] ==> [a]
guard not filter(a)
var f = filter
do

filter := lambda(b) :
f(b) or predicate(b,a)

end;
end

end

Ptolemy Miniconference  10

Programming language features

• optionally typed
– generic polymorphic type system

• full functional sub-language
• everything first-class citizen (well, almost)

– functions
– procedures
– NOT actors or actions (yet)

• lexically scoped
• no aliasing of stateful structures

– useful for handling concurrency



6

Ptolemy Miniconference  11

Executing CAL: Interpreter

• Ptolemy actor
– configured by CAL script
– smooth embedding into Ptolemy II
– first version in current release

• domain-dependent interpretation
(Chris Chang)
– interpreter adapts to domain
– making actors more domain-polymorphic
– What's a model of computation?

Ptolemy Miniconference  12

Executing CAL: Translators

CAL

Canonical CALML

Pt/Java
(UCB)

Palsjo/Koala
(Lund)

JGrafChart
(Lund)

CALML

generic 
Java

generic C

... ...

XML for representing actors (CALML)
• persistent format
• infrastructure for checking, transformation
XSLT as implementation language
• analysis
• program transformation
• code generation



7

Ptolemy Miniconference  13

Executing CAL: Composer/Translator

A

C
B

CALML 
composition

CALML

CAL

CAL

CAL

co
d
e

g
en

eratio
n
model of computation

a Ptolemy II model

Ptolemy Miniconference  14

Executing CAL: Discovering concurrency

B

CA

D E

a

b

a

a

a

a

b

b

b

x

x

x x

x

y

y

z

v1

v2

y

b

B

CA

D E

a

b

a

a

a

a

b

b

b

x

x

x x

x

y

y

z

v1

v2

y

b

Thread 1

Thread 2

Thread 3
Queue 1

Queue 2

Queue 3

actor B () a, b ==> x, y:

s := <something>;

action a: [v] ==> x: [f(v, s)] end

action b: [v] ==> y: [g(v)]
do

s := h(v, s);
end

end



8

Ptolemy Miniconference  15

Conclusion

• CAL is a Ptolemy scripting language
– simple, portable description of actors
– can be analyzed, interpreted, compiled, 

composed

• new research directions
– composers as models of computation

• composer languages?
– infrastructure for executing actors

• component models, execution environments
– transformations/analyses of actor networks

• distribution
• efficient translation

Ptolemy Miniconference  16

Thank you.

resources: www.gigascale.org/caltrop
contact: janneck@eecs.berkeley.edu


