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CAL people

• Chris Chang
• Johan Eker (now Ericsson Mobile Platforms, Research)

• Ernesto Wandeler (ETH Zurich)

• Lars Wernli (then ETH Zurich)

• Ed Willink (Thales Research)

• Yang Zhao
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Why another language?

• Writing simple actors should be simple.
– Ptolemy II API very rich
– actor writing requires considerable skill
– BUT: Actors have a lot of common structure.

• Models should allow efficient code generation.
– actor descriptions contain a lot of "admin" code

• local precedent:
– ptlang in Ptolemy Classic (J. Buck)
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Why another language?

We should generate actors from a more 
abstract description.

– reduces amount of code to be written
– makes writing actors more accessible
– reduces error probability
– makes code more versatile

• retargeting (other platforms, new versions of the 
Ptolemy API)

• analysis & composition
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actor ID () In ==> Out :

action [a] ==> [a] end
end

Simple actors

actor A (k) Input1, Input2 ==> Output:

action [a], [b] ==> [k*(a + b)] end
end

actor Merge ()
Input1, Input2 ==> Output:

action Input1: [x] ==> [x] end
action Input2: [x] ==> [x] end

end

actor firing ≡ execution of one enabled action
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An actor with state

actor Sum () Input ==> Output:

sum := 0;

action [a] ==> [sum]
do

sum := sum + a;
end

end
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Action guards

actor FairMerge ()
Input1, Input2 ==> Output:

s := 0;

action Input1: [x] ==> [x]
guard s = 0
do

s := 1;
end

action Input2: [x] ==> [x]
guard s = 1
do

s := 0;
end

end

action
• input patterns 

declaring variables
• guard

specifying enabling conditions
• output expressions

computing output tokens
• body

modifying the actor state
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Action schedules

actor FairMerge ()
Input1, Input2 ==> Output:

s := 0;

action Input1: [x] ==> [x]
guard s = 0
do

s := 1;
end

action Input2: [x] ==> [x]
guard s = 1
do

s := 0;
end

end

actor FairMerge ()
Input1, Input2 ==> Output:

A: action Input1: [x] ==> [x] end
B: action Input2: [x] ==> [x] end

schedule fsm State0:
State0 (A) --> State1;
State1 (B) --> State0;

end
end

actor FairMerge ()
Input1, Input2 ==> Output:

A: action Input1: [x] ==> [x] end
B: action Input2: [x] ==> [x] end

schedule regexp
(A B)*

end
end
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First-class functions

actor Sieve (predicate) Input ==> Output:

filter := lambda (a) : false end;

action [a] ==> []
guard filter(a) end

action [a] ==> [a]
guard not filter(a)
var f = filter
do

filter := lambda(b) :
f(b) or predicate(b,a)

end;
end

end
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Programming language features

• optionally typed
– generic polymorphic type system

• full functional sub-language
• everything first-class citizen (well, almost)

– functions
– procedures
– NOT actors or actions (yet)

• lexically scoped
• no aliasing of stateful structures

– useful for handling concurrency
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Executing CAL: Interpreter

• Ptolemy actor
– configured by CAL script
– smooth embedding into Ptolemy II
– first version in current release

• domain-dependent interpretation
(Chris Chang)
– interpreter adapts to domain
– making actors more domain-polymorphic
– What's a model of computation?
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Executing CAL: Translators

CAL

Canonical CALML

Pt/Java
(UCB)

Palsjo/Koala
(Lund)

JGrafChart
(Lund)

CALML

generic 
Java

generic C

... ...

XML for representing actors (CALML)
• persistent format
• infrastructure for checking, transformation
XSLT as implementation language
• analysis
• program transformation
• code generation
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Executing CAL: Composer/Translator
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a Ptolemy II model
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Executing CAL: Discovering concurrency
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actor B () a, b ==> x, y:

s := <something>;

action a: [v] ==> x: [f(v, s)] end

action b: [v] ==> y: [g(v)]
do

s := h(v, s);
end

end
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Conclusion

• CAL is a Ptolemy scripting language
– simple, portable description of actors
– can be analyzed, interpreted, compiled, 

composed

• new research directions
– composers as models of computation

• composer languages?
– infrastructure for executing actors

• component models, execution environments
– transformations/analyses of actor networks

• distribution
• efficient translation
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Thank you.

resources: www.gigascale.org/caltrop
contact: janneck@eecs.berkeley.edu


